Zakharov–Kuznetsov Equation for Describing Low-Frequency Nonlinear Dust Acoustic Perturbations in Saturn’s Dusty Magnetosphere

封面

如何引用文章

全文:

详细

A description is given of low-frequency nonlinear dust acoustic waves in Saturn’s dusty magnetosphere, which contains electrons of two types (hot and cold) obeying the kappa distribution, magnetospheric ions, and charged dust particles. For the corresponding conditions, the derivation of the Zakharov–Kuznetsov equation is given, which describes the nonlinear dynamics of dust acoustic waves in the case of low frequencies and a pancake-shaped wave packet along an external magnetic field. It is shown that under the conditions of Saturn’s magnetosphere there exist solutions of the Zakharov–Kuznetsov equation in the form of one-dimensional and three-dimensional solitons. Possible observations of the considered solitons in future space missions are discussed.

全文:

受限制的访问

作者简介

S. Kopnin

Space Research Institute, Russian Academy of Sciences

Email: popel@iki.rssi.ru
俄罗斯联邦, Moscow

D. Shokhrin

Higher School of Economics

Email: popel@iki.rssi.ru
俄罗斯联邦, Moscow

S. Popel

Space Research Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: popel@iki.rssi.ru
俄罗斯联邦, Moscow

参考

  1. Попель С.И. // Природа. 2015. № 9. С. 48.
  2. Wahlund J.-E., André M., Eriksson A.I.E., Lundberg M., Morooka M.W., Shafiq M., Averkamp T.F., Gurnett D.A., Hospodarsky G.B., Kurth W.S., Jacobsen K.S., Pedersen A., Farrell W., Ratynskaia S., Piskunov N. // Planetary Space Sci. 2009. V. 57. P. 1795.
  3. Yaroshenko V.V., Ratynskaia S., Olson J., Brenning N., Wahlund J.-E., Morooka M., Kurth W.S., Gurnett D.A., Morfill G.E. // Planetary Space Sci. 2009. V. 57. P. 1807.
  4. Sittler Jr. E.C., Ogilvie K.W., Scudde J.D. // J. Geophys. Res. 1983. V. 88. P. 8847.
  5. Barbosa D.D., Kurth W.S. // J. Geophys. Res. 1993. V. 98. P. 9351.
  6. Koen E.J., Collier A.B., Maharaj S.K., Hellberg M.A. // Phys. Plasmas. 2014. V. 21. P. 072122.
  7. Popel S.I., Zelenyi L.M., Golub’ A.P., Dubinskii A.Yu. // Planetary Space Sci. 2018. V. 156. P. 71.
  8. Голубь А.П., Попель С.И. // Письма ЖЭТФ. 2021.Т. 113. С. 440.
  9. Schippers P., Blanc M., Andre N., Dandouras I., Lewis G.R., Gilbert L.K., Persoon A.M., Krupp N., Gurnett D.A., Coates A.J., Krimigis S.M., Young D.T., Dougherty M.K. // J. Geophys. Res. 2008. V. 113. P. A07208.
  10. Yeager A. // Nature. 2008. doi: 10.1038/news.2008.1254.
  11. Pécseli H.L., Lybekk B., Trulsen J., Eriksson A. // Plasma Phys. Controlled Fusion. 1997. V. 39. P. A227.
  12. Попель С.И. // Физика плазмы. 2001. Т. 27. С. 475.
  13. Копнин С.И., Косарев И.Н., Попель С.И. // Физика плазмы. 2005. Т. 31. С. 224.
  14. Копнин С.И., Шохрин Д.В., Попель С.И. // Физика плазмы. 2022. Т. 48. С. 163.
  15. Копнин С.И., Шохрин Д.В., Попель С.И. // Физика плазмы. 2023. Т. 49. С. 582.
  16. Петвиашвили В.И., Похотелов О.А. Уединенные волны в плазме и атмосфере. М.: Энергоатомиздат, 1989.
  17. Banerjee G., Maitra S. // Phys. Plasmas. 2015. V. 22. P. 043708.
  18. Popel S.I., Kopnin S.I., Kosarev I.N., Yu M.Y. // Adv. Space Res. 2006. V. 37. P. 414.
  19. Rubab N., Murtaza G. // Physica Scripta. 2006. V. 73. P. 178.
  20. Зейтунян Р.Х. // УФН. 1995. Т. 165. С. 1403.
  21. Рыскин Н.М., Трубецков Д.И. Нелинейные волны. М.: URSS, 2021. С. 180.
  22. Кассем А.И., Копнин С.И., Попель С.И., Зеленый Л.М. // Физика плазмы. 2022. T. 48. P. 871.
  23. Sulaiman A.H., Kurth W.S., Hospodarsky G.B., Averkamp T.F., Ye S.-Y., Menietti J.D., Farrell W.M., Gurnett D.A., Persoon A.M., Dougherty M.K., Hunt G.J. // Geophys. Res. Lett. 2018. V. 45. P. 7347.
  24. Kopnin S.I., Kosarev I.N., Popel S.I., Yu M.Y. // Planetary Space Sci. 2004. V. 52. P. 1187.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Characteristic view of one-dimensional solitons propagating at the angle J to the magnetic field: J = 1° - solid curve, J = 3° - dashed curve, J = 5° - dashed curve. The graphs are plotted for three cases of possible dust particle concentrations: nd0 = 10-4 cm-3 (a), nd0 = 10-3 cm-3 (b), nd0 = 10-2 cm-3 (c)

下载 (138KB)
3. Fig. 2. Moduli of the amplitudes of the soliton solutions (67) as a function of the characteristic mean dust particle sizes a and the soliton propagation velocity u at J = 5° for nd0 = 10-4 cm-3 (a), nd0 = 10-3 cm-3 (b), nd0 = 10-2 cm-3 (c)

下载 (145KB)
4. Fig. 3. Three-dimensional soliton for the cases: nd0 = 10-2 cm-3 (a), nd0 = 10-3 cm-3 (b), nd0 = 10-4 cm-3 (c)

下载 (194KB)

版权所有 © Russian Academy of Sciences, 2024