Options for Implementation of IR Thermography Diagnostics in a Tokamak with Reactor Technologies TRT

Capa

Citar

Texto integral

Resumo

AbstractOptions for implementing the IR thermography diagnostic system in a TRT facility are considered. Two variants of the optical scheme for measuring the temperature of the first wall and divertor targets are proposed: a wide-angle system combined with two divertor channels and a four-channel viewing system. The optical resolution of both systems and the levels of the collected signal are numerically simulated. On the basis of the calculations performed, conclusions are drawn about the compliance of the systems with the requirements for measuring the temperature of TRT plasma-facing elements. The sources of the temperature measurement error are considered, and the error caused by the reflection of radiation from structural plasma-facing elements by the surface under study is estimated. Calibration issues for IR thermography diagnostics are also discussed.

Sobre autores

A. Razdobarin

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech

Autor responsável pela correspondência
Email: Aleksey.Razdobarin@mail.ioffe.ru
Rússia, St. Petersburg, 194021; St. Petersburg, 194223

Y. Shubin

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Rússia, St. Petersburg, 194021

D. Bogachev

Spectral-Tech

Email: Aleksey.Razdobarin@mail.ioffe.ru
Rússia, St. Petersburg, 194223

D. Elets

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech

Email: Aleksey.Razdobarin@mail.ioffe.ru
Rússia, St. Petersburg, 194021; St. Petersburg, 194223

O. Medvedev

Ioffe Institute, Russian Academy of Sciences; Spectral-Tech

Email: Aleksey.Razdobarin@mail.ioffe.ru
Rússia, St. Petersburg, 194021; St. Petersburg, 194223

E. Mukhin

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Rússia, St. Petersburg, 194021

L. Snigirev

Ioffe Institute, Russian Academy of Sciences

Email: Aleksey.Razdobarin@mail.ioffe.ru
Rússia, St. Petersburg, 194021

Bibliografia

  1. Chen M.W., Gong X. Z., Gan K. F., Wang L., Yuan Q. P., Wu K., Li K. D., Duan Y. M., Meng L. Y., Zhang B., Shu S. B., Zhang J. Y., Liu C., Liang R. R., Li C. J. and The EAST team // Nucl. Fusion. 2020. V. 60. P. 076009. doi: 10.1088/1741-4326/ab8c65.
  2. Guilhem D.// Fus. Eng. Des. 2005.V. 74(1) P. 879. doi: 10.1016/j.fusengdes.2005.08.021
  3. Eich T., Leonard A. W., Pitts R. A., Fundamenski W., Goldston R. J., Gray T. K., Herrmann A., Kirk A., Kallenbach A., Kardaun O., Kukushkin A. S., LaBombard B., Maingi R., Makowski M. A., Scarabosio A., Sieglin B., Terry J., Thornton A., ASDEX Upgrade Team and JET EFDA // Nucl. Fusion. 2013. V. 53. P. 093031. doi: 10.1088/0029-5515/53/9/093031.
  4. Houry M., Pocheau C., Aumeunier M-H., Balorin C., Blanckaert K., Corre Y., Courtois X., Ferlay F., Gaspar J., Gazzotti S., Grosjean A., Loarer Th., Roche H., Saille A., Vives S., the WEST Team // Fusion Eng. Des. 2019. V. 146A. P. 1104—1107. doi: 10.1016/j.fusengdes.2019.02.017.
  5. Hollmann E.M., Commaux N., Eidietis N. W., Lasnier C. J., Rudakov D. L., Shiraki D., Cooper C., Martin-Solis J.R., Parks P. B., Paz-Soldan C. // Phys. Plasmas. 2017. V. 24(6). 062505. doi: 10.1063/1.4985086.
  6. Guilhem D., Reichle R., Roche H. // QIRT Journal.2006. V.3. № 2.Р. 1.
  7. Aumeunier M.-H. et al // IEEE Trans. Plasma Sci. 2012.V.40.P.753
  8. M-H. Aumeunier et al. // Nuclear Materials and Energy. 2021.V. 26 .100879
  9. Раздобарин А.Г., Шубин Я. Р., Белокур А. А., Богачев Д. Л., Елец Д.И., Медведев О. С., Мухин Е. Е., Снигирев Л. А., Алексеенко И. В. // Физика плазмы.2024. Т. 50. С.
  10. Мазуль И.В., Гиниятулин Р. Н., Кавин А. А., Литуновский Н. В., Маханьков А. Н., Пискарев П. Ю., Танчук В. Н // Физика плазмы. 2021. Т. 47. № 12. С. 1103.
  11. Gaspar J. et al. // Nucl. Mat. and Energy. 2020. V.25.100851
  12. А. Г. Раздобарин, Ю. М. Гаспарян, Д. Л. Богачев, А. М. Дмитриев, Д. И Елец, А. Н. Коваль, Г. С. Курскиев, Е. Е. Мухин, Д. Г. Булгадарян, С. А. Крат, Е. Д. Маренков, И. В. Алексеенко// Физика плазмы. 2022. T. 48. № 12. С. 1216.
  13. Кащук Ю. А., Коновалов С. В., Красильников А. В. // Физика плазмы. 2022.T. 48. № 12. С. 1159.
  14. Litnovsky A. et al. // Journal of Nuclear Materials.2007. V. 363—365. 1395—1402.
  15. Razdobarin A. G. et al. // Nucl. Fusion. 2015. V. 55. Р. 093022.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024