Two-Dimensional Distribution of Plasma Electric Potential in the T-10 Tokamak

Capa

Citar

Texto integral

Resumo

Heavy ion beam probe (HIBP) is a unique plasma diagnostics that makes it possible to measure the electric potential φ of high-temperature plasma and its fluctuations y, as well as the density ne and poloidal magnetic field Bpol fluctuations. Position of the point of performing measurements in the plasma vertical cross-section depends on the beam energy and angle of its entrance into the plasma. The variation of these two parameters makes it possible to construct a two-dimensional (2D) detector grid, which covers the domain of possible measurements. The measurement results obtained in the detector grid points provide for constructing 2D distributions of plasma parameters. For the OH and ECRH stages of the T-10 tokamak shots, 2D distributions of the plasma electric potential are presented for the regime with the on-axis magnetic field of Bt = 2.2 T, plasma current of Ipl = 230 kA, line-average density of ne ≈ 1.1 × 1019 m–3 and off-axis ECRH power of PECRH = 1.7 MW.

Sobre autores

Ya. Ammosov

National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University)

Email: ammosov.ium@phystech.edu
123182, Moscow, Russia; 141701, Dolgoprudny, Russia

F. Khabanov

University of Wisconsin-Madison

Email: melnikov_07@yahoo.com
53706, Madison, WI, USA

M. Drabinskiy

National Research Centre “Kurchatov Institute”

Email: melnikov_07@yahoo.com
123182, Moscow, Russia

A. Melnikov

National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University); National Research Nuclear University “Moscow Engineering Physics Institute”

Email: melnikov_07@yahoo.com
123182, Moscow, Russia; 141701, Dolgoprudny, Russia; 115409, Moscow, Russia

L. Eliseev

National Research Centre “Kurchatov Institute”

Email: melnikov_07@yahoo.com
123182, Moscow, Russia

N. Kharchev

National Research Centre “Kurchatov Institute”; Prokhorov General Physics Institute, Russian Academy of Sciences

Email: melnikov_07@yahoo.com
123182, Moscow, Russia; 119991, Moscow, Russia

S. Lysenko

National Research Centre “Kurchatov Institute”

Autor responsável pela correspondência
Email: melnikov_07@yahoo.com
123182, Moscow, Russia

Bibliografia

  1. Jobes F.C., Hickok R.L. // Nucl. Fusion. 1970. V. 10. P. 195. https://doi.org/10.1088/0029-5515/10/2/015
  2. Jobes F.C., Marshall J.F., Hickok R.L. // Phys. Rev. Lett. 1969. V. 22. P. 1042. https://doi.org/10.1103/PhysRevLett.22.1042
  3. Melnikov A.V., Eliseev L.G., Drabinskij M.A., Khaba-nov P.O., Kharchev N.K., Lysenko S.E., Zenin V.N., Krupnik L.I., Chmyga A.A., Deshko G.N., Khrebtov S.M., Komarov A.D., Kozachek A.S., Zhezhera A.I., Barca-la J.M., Bravo A., Hidalgo C., Lopez J., Martin G., Molinero A., De Pablos J.L., Soleto A., Ufimtsev M.V. // N-ucl. Fusion. 2017. V. 57. P. 072004. https://doi.org/10.1088/1741-4326/aa5382
  4. Melnikov A.V., Drabinskiy M.A., Eliseev L.G., Khaba-nov P.O., Kharchev N.K., Krupnik L.I., De Pablos J.L., Kozachek A.S., Lysenko S.E., Molinero A., Igonki-na G.B., Sokolov M.M. // Fusion Eng. Des. 2019. V. 146. P. 850. https://doi.org/10.1016/j.fusengdes.2019.01.096
  5. Shimizu A., Ido T., Kurachi M., Makino R., Nishiura M., Kato S., Nishizawa A., Hamada Y. // Rev. Sci. Instrum. 2014. V. 85. P. 1. https://doi.org/10.1063/1.4891975
  6. Sharma R., Khabanov P.O., Melnikov A.V., Hidalgo C., Cappa A., Chmyga A., Eliseev L. G., Estrada T., Khar-chev N. K., Kozachek A.S., Krupnik L.I., Malaquias A., van Milligen B., Molinero A., de Pablos J.L., Pastor I., Zenin V.N. // Phys. Plasmas. 2020. V. 27. P. 062502. https://doi.org/10.1063/1.5142996
  7. Melnikov A.V., Eliseev L.G., Barcala J.M., Cappa A., Chmyga A., Drabinskij M.A., Hidalgo C., Khabanov P.O., Kharchev N.K., Kozachek A.S. et al. // Plasma Phys. Control. Fusion. 2022. V. 64. P. 054009. https://doi.org/10.1088/1361-6587/ac5b4c
  8. Ammosov Y.M., Khabanov F.O., Drabinskiy M.A., Melnikov A.V., Eliseev L.G., Kharchev N.K., Lysenko S.E. // MTPDA 2022. Moscow: NRNU MEPhI, 2022. P. 6.
  9. Drabinskiy M.A., Melnikov A.V., Khabanov P.O., Elise-ev L.G., Kharchev N.K., Ilin A.M., Sarancha G.A., Vadimov N.A. // J. Instrum. 2019. V. 14. P. C11027. https://doi.org/10.1088/1748-0221/14/11/C11027
  10. Khabanov P.O., Melnikov A.V., Minaev V.B., Koma-rov A.D. // Problems Atomic Sci. Technol. Ser. Plasma Phys. 2020. V. 130. P. 195. https://doi.org/10.46813/2020-130-195
  11. Bagdasarov A.A., Buzankin V.V., Vasin N.L., Gorbu-nov E.P., Denisov V.F., Kuleshov E.M., Savchenko V.N., Khilil’ V.V., Shcherbov V.A. // Diagnostika plazmy (Plasma diagnostics). Moscow: Energoatomizdat, 1981. V. 4. P. 141.
  12. Esipchuk Y.V., Kirneva N.A., Borschegovskij A.A., Chistyakov V.V., Denisov V.Ph., Dremin M.M., Gorbu-nov E.P., Grashin S.A., Kalupin D.V., Khimchenko L.N. et al. // Plasma Phys. Control. Fusion. 2003. V. 45. P. 793. https://doi.org/10.1088/0741-3335/45/5/320
  13. Grashin S.A., Arkhipov I.I., Budaev V.P., Karpov A.V., Klyuchnikov L.A., Khimchenko L.N., Melnikov A.V., Sarychev D.V., Sergeev N.S., Zemtsov I.A. // Fusion Eng. Des., 2019. V. 146B. P. 2100. https://doi.org/10.1016/j.fusengdes.2019.03.115
  14. Andreev V.F., Borschegovskij A.A., Chistyakov V.V., Dnestrovskij Yu.N., Gorbunov E.P., Kasyanova N.V., Lysenko S.E., Melnikov A.V., Myalton T.B., Roy I.N., Sergeev D.S., Zenin V.N. // Plasma Phys. Control. Fusion. 2016. V. 58. P. 055008. https://doi.org/10.1088/0741-3335/58/5/055008
  15. Гридина Т.В., Валенсиа О., Питерский В.В., Плоскирев Е.Г., Плоскирев Г.Н., Позняк В.И. // ICPAF 2011. Zvenigorod, 2011. URL: http://www.fpl.gpi.ru/Zvenigorod/XXXVIII/Mu/ru/BX-Gridina.doc.
  16. Melnikov A.V., Eliseev L.G., Perfilov S.V., Andreev V.F., Grashin S.A., Dyabilin K.S., Chudnovskiy A.N., Isaev M.Yu., Lysenko S.E., Mavrin V.A. et al. // Nucl. Fusion. 2013. V. 53. P. 093019. https://doi.org/10.1088/0029-5515/53/9/093019
  17. Melnikov A.V., Eliseev L.G., Drabinskij M.A., Grashin S.A., Khabanov P.O., Kharchev N.K., Lysenko S.E., Zenin V.N., T-10 Team // 27th IAEA Fusion Energy Conference (FEC 2018) – IAEA CN-258. 2018. EX/P5-10. URL: https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202018/fec2018-preprints/preprint0058.pdf.
  18. Melnikov A.V., Eliseev L.G., Grashin S.A., Drabinskiy M.A., Khabanov P.O., Kharchev N.K., Krupin V.A., Lysen-ko S.E., Nemets A.R., Nurgaliev M.R., Ryzhakov D.A., Shurygin R.V., Soloviev N.A., Vershkov V.A. and T‑10 Team // 28th IAEA Fusion Energy Conference (FEC 2020). 2021. EX/6-5. URL: https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202020/fec2020-preprints/preprint0661.pdf.
  19. Драбинский М.А., Елисеев Л.Г., Хабанов Ф.О., Мельников А.В., Зенин В.Н., Харчев Н.К., Грашин С.А. // ICPAF 2018. Zvenigorod, 2018. P. 107.
  20. Drabinskiy M.A., Khabanov P.O., Melnikov A.V., Elise-ev L.G., Kharchev N. // ICPAF-2021. Zvenigorod, 2021.
  21. Ammosov Y.M., Khabanov P.O., Drabinskiy M.A., Melnikov A.V., Eliseev L.G., Kharchev N.K., Lysenko S.E. // Phys. Atomic Nucl. 2022. V. 85. P. 2071. https://doi.org/10.1134/s1063778822100040
  22. Drabinskiy M.A., Eliseev L.G., Khabanov P.O., Melni-kov A.V., Kharchev N.K., Sergeev N.S., Grashin S.A. // J. Phys. Conf. Ser. 2019. V. 1383. P. 012004. https://doi.org/10.1088/1742-6596/1383/1/012004
  23. Drabinskiy M.A., Melnikov A.V., Eliseev L.G., Khabanov P.O., Kharchev N.K., Lysenko S.E. // J. Phys. Conf. Ser. 2021. V. 2055. P. 012001. https://doi.org/10.1088/1742-6596/2055/1/012001
  24. Melnikov A.V., Krupnik L.I., Ascasibar E., Cappa A., Chmyga A.A., Deshko G.N., Drabinskij M.A., Eliseev L.G., Hidalgo C., Khabanov P.O. et al. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 084008. https://doi.org/10.1088/1361-6587/aac97f

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (114KB)
3.

Baixar (55KB)
4.

Baixar (397KB)
5.

Baixar (88KB)
6.

Baixar (86KB)
7.

Baixar (613KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023