Two-Dimensional Description of Nonlinear Wave Perturbations in the Dusty Saturn’s Magnetosphere
- Authors: Kopnin S.I.1, Shokhrin D.V.2, Popel S.I.1
-
Affiliations:
- Space Research Institute, Russian Academy of Sciences
- National Research University Higher School of Economics
- Issue: Vol 49, No 6 (2023)
- Pages: 582-589
- Section: ПЫЛЕВАЯ ПЛАЗМА
- URL: https://ter-arkhiv.ru/0367-2921/article/view/668514
- DOI: https://doi.org/10.31857/S0367292123600279
- EDN: https://elibrary.ru/WYHAGS
- ID: 668514
Cite item
Full Text
Abstract
Two-dimensional description of nonlinear dust-acoustic waves in the dusty Saturn’s magnetiosphere that contains electrons of two types (the hot and the cold ones) obeying the kappa distribution, along with magnetospheric ions and charged dust particles, is presented. The Kadomtsev–Petviashvili equation that describes the nonlinear dynamics of the nearly one-dimensional wave structures is derived for the conditions of the dusty Saturn’s magnetosphere. The possibility of propagation of localized wave structures of the dust-acoustic soliton type is analyzed. It is demonstrated that the Kadomtsev–Petviashvili equation has solutions in the form of one-dimensional solitons and two-dimensional N-solitons under the conditions of the Saturn’s magnetosphere. The possibility of observation of the discussed solitons during future space missions is discussed.
About the authors
S. I. Kopnin
Space Research Institute, Russian Academy of Sciences
Email: popel@iki.rssi.ru
117997, Moscow, Russia
D. V. Shokhrin
National Research University Higher School of Economics
Email: popel@iki.rssi.ru
101000, Moscow, Russia
S. I. Popel
Space Research Institute, Russian Academy of Sciences
Author for correspondence.
Email: izvekova@iki.rssi.ru
117997, Moscow, Russia
References
- Попель С.И. // Природа. 2015. № 9. С. 48.
- Wahlund J.-E., André M., Eriksson A.I.E., Lundberg M., Morooka M.W., Shafiq M., Averkamp T.F., Gurnett D.A., Hospodarsky G.B., Kurth W.S., Jacobsen K.S., Peder-sen A., Farrell W., Ratynskaia S., Piskunov N. // Planet. Space Sci. 2009. V. 57. P. 1795.
- Yaroshenko V.V., Ratynskaia S., Olson J., Brenning N., Wahlund J.-E., Morooka M., Kurth W.S., Gurnett D.A., Morfill G.E. // Planet. Space Sci. 2009. V. 57. P. 1807.
- Sittler, Jr. E.C., Ogilvie K.W., Scudde J.D. // J. Geophys. Res. 1983. V. 88. P. 8847.
- Barbosa D.D., Kurth W.S. // J. Geophys. Res. 1993. V. 98. P. 9351.
- Koen E.J., Collier A.B., Maharaj S.K., Hellberg M.A. // Phys. Plasmas. 2014. V. 21. P. 072122.
- Popel S.I., Zelenyi L.M., Golub’ A.P., Dubinskii A.Yu. // Planet. Space Sci. 2018. V. 156. P. 71.
- Голубь А.П., Попель С.И. // Письма ЖЭТФ. 2021. Т. 113. С. 440.
- Schippers P., Blanc M., Andre N., Dandouras I., Lewis G.R., Gilbert L.K., Persoon A.M., Krupp N., Gurnett D.A., Coates A.J., Krimigis S.M., Young D.T., Dougherty M.K. // J. Geophys. Res. 2008. V. 113. P. A07208.
- Yeager A. // Nature. 2008. https://doi.org/10.1038/news.2008.1254
- Pécseli H.L., Lybekk B., Trulsen J., Eriksson A. // Plasma Phys. Controlled Fusion. 1997. V. 39. P. A227.
- Попель С.И. // Физика плазмы. 2001. Т. 27. С. 475.
- Копнин С.И., Косарев И.Н., Попель С.И., Ю М. // Физика плазмы. 2005. Т. 31. С. 224.
- Копнин С.И., Шохрин Д.В., Попель С.И. // Физика плазмы. 2022. Т. 48. С. 163.
- Петвиашвили В.И., Похотелов О.А. Уединенные волны в плазме и атмосфере. М.: Энергоатомиздат, 1989.
- Копнин С.И., Попель С.И. // Письма ЖТФ. 2019. Т. 45. С. 26.
- Копнин С.И., Морозова Т.И., Попель С.И. // Физика плазмы. 2019. Т. 45. С. 831.
- Копнин С.И., Попель С.И. // Письма ЖТФ. 2021. Т. 47. С. 29.
- Banerjee G., Maitra S. // Phys. Plasmas. 2015. V. 22. P. 043708.
- Rubab N., Murtaza G. // Physica Scripta. 2006. V. 73. P. 178.
- Кассем А.И., Копнин С.И., Попель С.И., Зеле-ный Л.М. // Физика плазмы. 2022. Т. 48. С. 345.
- Кассем А.И., Копнин С.И., Попель С.И., Зеле-ный Л.М. // Физика плазмы. 2022. Т. 48. С. 871.
- Belashov V.Yu., Vladimirov S.V. Solitary Waves in Dispersive Complex Media. Theory. Simulation. Applications. Berlin: Springer, 2005. 292 p.
- Белашов В.Ю. // Геомагнетизм и аэрономия. 2017. Т. 57. С. 1.
- Абловиц М.Ж., Сегур Х. Солитоны и метод обратной задачи. M.: Наука, 1987.
Supplementary files
