Синтетические активаторы аутофагии
- Авторы: Гусева Е.А.1,2,3, Павлова Ю.А.1,2,3, Донцова О.А.4,2,3,5, Сергиев П.В.6,2,3
-
Учреждения:
- Сколковского института науки и технологий
- НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова
- Московский государственный университет имени М.В. Ломоносова
- Сколковскогй институт науки и технологий
- Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
- Сколковский институт науки и технологий
- Выпуск: Том 89, № 1 (2024)
- Страницы: 33-60
- Раздел: Статьи
- URL: https://ter-arkhiv.ru/0320-9725/article/view/665802
- DOI: https://doi.org/10.31857/10.31857/S0320972524010027
- EDN: https://elibrary.ru/YRTMUL
- ID: 665802
Цитировать
Аннотация
Аутофагия является центральным процессом для деградации внутриклеточных компонентов, работающих с нарушениями. Молекулярные механизмы, лежащие в основе этого процесса, крайне сложны для изучения, так как в них задействовано большое число участников. Основная задача аутофагии – это перераспределение клеточных ресурсов в ответ на изменение окружающей среды, например голодание. Исследования последних лет показывают, что регуляция аутофагии может стать ключом к достижению здорового долголения, а также позволит создать терапевтические средства для лечения нейродегенеративных заболеваний, таких как болезни Паркинсона и Альцгеймера. В связи с этим разработка активаторов аутофагии с детально описанным механизмом действия является важнейшим направлением для исследований. Ряд коммерческих компаний на данный момент находится на разных этапах разработки таких молекул, а некоторые уже используют активаторы аутофагии на практике.
Ключевые слова
Полный текст

Об авторах
Е. А. Гусева
Сколковского института науки и технологий; НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова; Московский государственный университет имени М.В. Ломоносова
Email: eguseva98@mail.ru
Центр наук о жизни, химический факультет
Россия, 143025 Сколково; 119991 Москва; 119991 МоскваЮ. А. Павлова
Сколковского института науки и технологий; НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова; Московский государственный университет имени М.В. Ломоносова
Email: eguseva98@mail.ru
Центр наук о жизни, химический факультет
Россия, 143025 Сколково; 119991 Москва; 119991 МоскваО. А. Донцова
Сколковскогй институт науки и технологий; НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова; Московский государственный университет имени М.В. Ломоносова; Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: eguseva98@mail.ru
Центр наук о жизни, химический факультет
Россия, 143025 Сколково; 119991 Москва; 119991 Москва; 117997 МоскваП. В. Сергиев
Сколковский институт науки и технологий; НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова; Московский государственный университет имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: petya@genebee.msu.ru
Центр наук о жизни, химический факультет, Институт функциональной геномики
Россия, 143025 Сколково; 119991 Москва; 117997 Moscow;Список литературы
- Pierzynowska, K., Gaffke, L., Cyske, Z., Puchalski, M., Rintz, E., Bartkowski, M., et al. (2018) Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases, Metab. Brain. Dis., 33, 989-1008, doi: 10.1007/s11011-018-0214-6.
- Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., et al. (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, 402, 672-676, doi: 10.1038/45257.
- Marinković, M., Šprung, M., Buljubašić, M., and Novak, I. (2018) Autophagy modulation in cancer: current knowledge on action and therapy, Oxid. Med. Cell Longev., 2018, 8023821, doi: 10.1155/2018/8023821.
- Campbell, G. R., and Spector, S. A. (2012) Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy, PLoS Pathog., 8, e1002689, doi: 10.1371/journal.ppat.1002689.
- Xie, Z., Lau, K., Eby, B., Lozano, P., He, C., Pennington, B., et al. (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice, Diabetes, 60, 1770-1778, doi: 10.2337/db10-0351.
- Wang, B., Yang, Q., Sun, Y., Xing, Y., Wang, Y., Lu, X., et al. (2014) Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice, J. Cell Mol. Med., 18, 1599-1611, doi: 10.1111/jcmm.12312.
- Georgakopoulos, N. D., Wells, G., and Campanella, M. (2017) The pharmacological regulation of cellular mitophagy, Nat. Chem. Biol., 13, 136-146, doi: 10.1038/nchembio.2287.
- Bravo-San Pedro, J. M., Kroemer, G., and Galluzzi, L. (2017) Autophagy and mitophagy in cardiovascular disease, Circ. Res., 120, 1812-1824, doi: 10.1161/CIRCRESAHA.117.311082.
- ВОЗ (2020) 10 ведущих причин смерти в мире, Всемирная организация здравоохранения, URL: https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death.
- Павлова Ю. А., Гусева Е. А., Донцова О. А., Сергиев П. В. (2024) Природные активаторы аутофагии, Биохимия, 1, 5-32, doi: 10.31857/S0320972524010018.
- Levine, B., Packer, M., and Codogno, P. (2015) Development of autophagy inducers in clinical medicine, J. Clin. Invest., 125, 14-24, doi: 10.1172/JCI73938.
- Russo, M., and Russo, G. L. (2018) Autophagy inducers in cancer, Biochem. Pharmacol., 153, 51-61, doi: 10.1016/ j.bcp.2018.02.007.
- Handschin, C., and Spiegelman, B. M. (2008) The role of exercise and PGC1alpha in inflammation and chronic disease, Nature, 454, 463-469, doi: 10.1038/nature07206.
- Varady, K. A., and Hellerstein, M. K. (2007) Alternate-day fasting and chronic disease prevention: a review of human and animal trials, Am. J. Clin. Nutr., 86, 7-13, doi: 10.1093/ajcn/86.1.7.
- Werner, E. A., and Bell, J. (1922) CCXIV. – The preparation of methylguanidine, and of ββ-dimethylguanidine by the interaction of dicyanodiamide, and methylammonium and dimethylammonium chlorides respectively, J. Chem. Soc. Trans., 121, 1790-1794, doi: 10.1039/CT9222101790.
- Cerezo, M., Tichet, M., Abbe, P., Ohanna, M., Lehraiki, A., Rouaud, F., et al. (2013) Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner, Mol. Cancer. Ther., 12, 1605-1615, doi: 10.1158/ 1535-7163.MCT-12-1226-T.
- Hur, K. Y., and Lee, M.-S. (2015) New mechanisms of metformin action: focusing on mitochondria and the gut, J. Diabetes Invest., 6, 600-609, doi: 10.1111/jdi.12328.
- Viollet, B., Guigas, B., Sanz Garcia, N., Leclerc, J., Foretz, M., and Andreelli, F. (2012) Cellular and molecular mechanisms of metformin: an overview, Clin. Sci. (Lond)., 122, 253-270, doi: 10.1042/CS20110386.
- Diamanti-Kandarakis, E., Economou, F., Palimeri, S., and Christakou, C. (2010) Metformin in polycystic ovary syndrome, Ann. N. Y. Acad. Sci., 1205, 192-198, doi: 10.1111/j.1749-6632.2010.05679.x.
- Tomic, T., Botton, T., Cerezo, M., Robert, G., Luciano, F., Puissant, A., et al. (2011) Metformin inhibits melanoma development through autophagy and apoptosis mechanisms, Cell Death Dis., 2, e199, doi: 10.1038/ cddis.2011.86.
- Zhang, G., Liu, H., Xue, T., Kong, X., Tian, D., Luo, L., et al. (2023) Ribavirin extends the lifespan of Caenorhabditis elegans through AMPK-TOR signaling, Eur. J. Pharmacol., 946, 175548, doi: 10.1016/j.ejphar.2023.175548.
- Jhou, A.-J., Chang, H.-C., Hung, C.-C., Lin, H.-C., Lee, Y.-C., Liu, W., et al. (2021) Chlorpromazine, an antipsychotic agent, induces G2/ M phase arrest and apoptosis via regulation of the PI3K/AKT/mTOR-mediated autophagy pathways in human oral cancer, Biochem. Pharmacol., 184, 114403, doi: 10.1016/j.bcp.2020.114403.
- Zhao, C., Yang, Z., Zhang, J., Li, O., Liu, S., Cai, C., et al. (2022) Inhibition of XPO1 with KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer by activating the p53/mTOR pathway, J. Transl. Med., 20, 434, doi: 10.1186/s12967-022-03635-w.
- Wang, J., Sha, J., Strong, E., Chopra, A. K., and Lee, S. (2022) FDA-approved amoxapine effectively promotes macrophage control of mycobacteria by inducing autophagy, Microbiol. Spectr., 10, e02509-22, doi: 10.1128/ spectrum.02509-22.
- Takla, M., Keshri, S., and Rubinsztein, D. C. (2023) The post-translational regulation of transcription factor EB (TFEB) in health and disease, EMBO Rep., 24, e57574, doi: 10.15252/embr.202357574.
- Chauhan, S., Ahmed, Z., Bradfute, S. B., Arko-Mensah, J., Mandell, M. A., Won Choi, S., et al. (2015) Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential, Nat. Commun., 6, 8620, doi: 10.1038/ncomms9620.
- Gu, Y., Chen, T., Li, G., Xu, C., Xu, Z., Zhang, J., et al. (2017) Lower Beclin 1 downregulates HER2 expression to enhance tamoxifen sensitivity and predicts a favorable outcome for ER positive breast cancer, Oncotarget, 8, 52156-52177, doi: 10.18632/oncotarget.11044.
- Wu, Q., and Sharma, D. (2023) Autophagy and breast cancer: connected in growth, progression, and therapy, Cells, 12, 1156, doi: 10.3390/cells12081156.
- Shen, P.-W., Chou, Y.-M., Li, C.-L., Liao, E.-C., Huang, H.-S., Yin, C.-H., et al. (2021) Itraconazole improves survival outcomes in patients with colon cancer by inducing autophagic cell death and inhibiting transketolase expression, Oncol. Lett., 22, 768, doi: 10.3892/ol.2021.13029.
- Park, H.-W., and Lee, J. H. (2014) Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies, Autophagy, 10, 2385-2386, doi: 10.4161/15548627.2014.984268.
- Kalonia, H., Kumar, P., and Kumar, A. (2011) Attenuation of proinflammatory cytokines and apoptotic process by verapamil and diltiazem against quinolinic acid induced Huntington like alterations in rats, Brain Res., 1372, 115-126, doi: 10.1016/j.brainres.2010.11.060.
- Miller, R. G., Smith, S. A., Murphy, J. R., Brinkmann, J. R., Graves, J., Mendoza, M., et al. (1996) A clinical trial of verapamil in amyotrophic lateral sclerosis, Muscle Nerve, 19, 511-515, doi: 10.1002/mus.880190405.
- Sarkar, S., Floto, R. A., Berger, Z., Imarisio, S., Cordenier, A., Pasco, M., et al. (2005) Lithium induces autophagy by inhibiting inositol monophosphatase, J. Cell Biol., 170, 1101-1111, doi: 10.1083/jcb.200504035.
- Fu, J., Shao, C.-J., Chen, F.-R., Ng, H.-K., and Chen, Z.-P. (2010) Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines, Neuro. Oncol., 12, 328-340, doi: 10.1093/neuonc/nop005.
- Xia, Q., Zheng, Y., Jiang, W., Huang, Z., Wang, M., Rodriguez, R., et al. (2016) Valproic acid induces autophagy by suppressing the Akt/mTOR pathway in human prostate cancer cells, Oncol. Lett., 12, 1826-1832, doi: 10.3892/ ol.2016.4880.
- Sarkar, S., Krishna, G., Imarisio, S., Saiki, S., O’Kane, C. J., and Rubinsztein, D. C. (2008) A rational mechanism for combination treatment of Huntington’ s disease using lithium and rapamycin, Hum. Mol. Genet., 17, 170-178, doi: 10.1093/hmg/ddm294.
- Murphy, R., and Freedman, J. E. (2001) Morphine and clonidine activate different K+ channels on rat amygdala neurons, Eur. J. Pharmacol., 415, R1-R3, doi: 10.1016/s0014-2999(01)00797-x.
- Lopez, A., Lee, S. E., Wojta, K., Ramos, E. M., Klein, E., Chen, J., et al. (2017) A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction, Brain, 140, 1128-1146, doi: 10.1093/ brain/awx005.
- Jung, H.-J., Seo, I., Jha, B. K., Suh, S.-I., and Baek, W.-K. (2021) Miconazole induces autophagic death in glioblastoma cells via reactive oxygen species-mediated endoplasmic reticulum stress, Oncol. Lett., 21, 335, doi: 10.3892/ol.2021.12596.
- Prajapat, S. K., Subramani, C., Sharma, P., Vrati, S., and Kalia, M. (2022) Avobenzone, Guaiazulene and Tioxolone identified as potent autophagy inducers in a high-throughput image based screen for autophagy flux, Autophagy Rep., 1, 523-536, doi: 10.1080/27694127.2022.2132075.
- Yang, C., Lim, W., Bazer, F. W., and Song, G. (2018) Avobenzone suppresses proliferative activity of human trophoblast cells and induces apoptosis mediated by mitochondrial disruption, Reproductive Toxicol., 81, 50-57, doi: 10.1016/ j.reprotox.2018.07.003.
- Staatz, C. E., and Tett, S. E. (2004) Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation, Clin. Pharmacokinetics, 43, 623-653, doi: 10.2165/00003088-200443100-00001.
- Nakagaki, T., Satoh, K., Ishibashi, D., Fuse, T., Sano, K., Kamatari, Y. O., et al. (2013) FK506 reduces abnormal prion protein through the activation of autolysosomal degradation and prolongs survival in prion-infected mice, Autophagy, 9, 1386-1394, doi: 10.4161/auto.25381.
- Park, K., Sonn, S. K., Seo, S., Kim, J., Hur, K. Y., Oh, G. T., et al. (2023) Impaired TFEB activation and mitophagy as a cause of PPP3/calcineurin inhibitor-induced pancreatic β-cell dysfunction, Autophagy, 19, 1444-1458, doi: 10.1080/15548627.2022.2132686.
- Motawi, T. K., Al-Kady, R. H., Senousy, M. A., and Abdelraouf, S. M. (2023) Repaglinide elicits a neuroprotective effect in rotenone-induced Parkinson’ s disease in rats: emphasis on targeting the DREAM-ER stress BiP/ATF6/CHOP trajectory and activation of mitophagy, ACS Chem. Neurosci., 14, 180-194, doi: 10.1021/acschemneuro.2c00656.
- Iacano, A. J., Lewis, H., Hazen, J. E., Andro, H., Smith, J. D., and Gulshan, K. (2019) Miltefosine increases macrophage cholesterol release and inhibits NLRP3-inflammasome assembly and IL-1β release, Sci. Rep., 9, 11128, doi: 10.1038/s41598-019-47610-w.
- Moskal, N., and McQuibban, G. A. (2023) From jeopardy champion to drug discovery; semantic similarity artificial intelligence, Autophagy, doi: 10.1080/15548627.2023.2210995.
- Moskal, N., Visanji, N. P., Gorbenko, O., Narasimhan, V., Tyrrell, H., Nash, J., et al. (2023) An AI-guided screen identifies probucol as an enhancer of mitophagy through modulation of lipid droplets, PLoS Biol., 21, e3001977, doi: 10.1371/journal.pbio.3001977.
- Chen, C., and Paw, B. H. (2012) Cellular and mitochondrial iron homeostasis in vertebrates, Biochim. Biophys. Acta, 1823, 1459-1467, doi: 10.1016/j.bbamcr.2012.01.003.
- Allen, G. F. G., Toth, R., James, J., and Ganley, I. G. (2013) Loss of iron triggers PINK1/Parkin-independent mitophagy, EMBO Rep., 14, 1127-1135, doi: 10.1038/embor.2013.168.
- McWilliams, T. G., Prescott, A. R., Montava-Garriga, L., Ball, G., Singh, F., Barini, E., et al. (2018) Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand, Cell Metab., 27, 439-449.e5, doi: 10.1016/ j.cmet.2017.12.008.
- Nagi, M., Tanabe, K., Nakayama, H., Ueno, K., Yamagoe, S., Umeyama, T., et al. (2016) Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata, Autophagy, 12, 1259-1271, doi: 10.1080/15548627.2016.1183080.
- Schiavi, A., Maglioni, S., Palikaras, K., Shaik, A., Strappazzon, F., Brinkmann, V., et al. (2015) Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans, Curr. Biol., 25, 1810-1822, doi: 10.1016/j.cub.2015.05.059.
- Hara, Y., Yanatori, I., Tanaka, A., Kishi, F., Lemasters, J. J., Nishina, S., Sasaki, K., and Hino, K. (2020) Iron loss triggers mitophagy through induction of mitochondrial ferritin, EMBO Rep., 21, e50202, doi: 10.15252/ embr.202050202.
- Kondapalli, C., Kazlauskaite, A., Zhang, N., Woodroof, H. I., Campbell, D. G., Gourlay, R., et al. (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65, Open Biol., 2, 120080, doi: 10.1098/rsob.120080.
- Savulescu, J. (2004) Thalassaemia major: the murky story of deferiprone, BMJ, 328, 358-359, doi: 10.1136/bmj.328.7436.358.
- Lyamzaev, K. G., Tokarchuk, A. V., Panteleeva, A. A., Mulkidjanian, A. Y., Skulachev, V. P., and Chernyak, B. V. (2018) Induction of autophagy by depolarization of mitochondria, Autophagy, 14, 921-924, doi: 10.1080/ 15548627.2018.1436937.
- Benjamin, D., Colombi, M., Moroni, C., and Hall, M. N. (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors, Nat. Rev. Drug Discov., 10, 868-880, doi: 10.1038/nrd3531.
- Huang, S., Yang, Z. J., Yu, C., and Sinicrope, F. A. (2011) Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1, J. Biol. Chem., 286, 40002-40012, doi: 10.1074/jbc.M111.297432.
- Li, X., Li, Z., Song, Y., Liu, W., and Liu, Z. (2018) The mTOR kinase inhibitor CZ415 inhibits human papillary thyroid carcinoma cell growth, Cell Physiol. Biochem., 46, 579-590, doi: 10.1159/000488625.
- Xie, J., Li, Q., Ding, X., and Gao, Y. (2018) Targeting mTOR by CZ415 Inhibits Head and Neck Squamous Cell Carcinoma Cells, Cell. Physiol. Biochem., 46, 676-686, doi: 10.1159/000488724.
- Thoreen, C. C., Kang, S. A., Chang, J. W., Liu, Q., Zhang, J., Gao, Y., et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1, J. Biol. Chem., 284, 8023-8032, doi: 10.1074/jbc.M900301200.
- Feldman, M. E., Apsel, B., Uotila, A., Loewith, R., Knight, Z. A., Ruggero, D., et al. (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2, PLoS Biol., 7, e38, doi: 10.1371/journal.pbio.1000038.
- Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, 8, 445-544, doi: 10.4161/auto.19496.
- Chung, C. Y.-S., Shin, H. R., Berdan, C. A., Ford, B., Ward, C. C., Olzmann, J. A., et al. (2019) Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition, Nat. Chem. Biol., 15, 776-785, doi: 10.1038/ s41589-019-0308-4.
- Floto, R. A., Sarkar, S., Perlstein, E. O., Kampmann, B., Schreiber, S. L., and Rubinsztein, D. C. (2007) Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington’ s disease models and enhance killing of mycobacteria by macrophages, Autophagy, 3, 620-622, doi: 10.4161/auto.4898.
- Seidel, K., Siswanto, S., Fredrich, M., Bouzrou, M., Brunt, E. R., van Leeuwen, F. W., et al. (2016) Polyglutamine aggregation in Huntington’ s disease and spinocerebellar ataxia type 3: similar mechanisms in aggregate formation, Neuropathol. Appl. Neurobiol., 42, 153-166, doi: 10.1111/nan.12253.
- Kovács, T., Billes, V., Komlós, M., Hotzi, B., Manzéger, A., Tarnóci, A., et al. (2017) The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms, Sci. Rep., 7, 42014, doi: 10.1038/srep42014.
- Long, J., Luo, X., Fang, D., Song, H., Fang, W., Shan, H., et al. (2022) Discovery of an autophagy inducer J3 to lower mutant huntingtin and alleviate Huntington’ s disease-related phenotype, Cell Biosci., 12, 167, doi: 10.1186/s13578-022-00906-3.
- Yu, M., Zeng, M., Pan, Z., Wu, F., Guo, L., and He, G. (2020) Discovery of novel akt1 inhibitor induces autophagy associated death in hepatocellular carcinoma cells, Eur. J. Med. Chem., 189, 112076, doi: 10.1016/j.ejmech.2020.112076.
- Du, Y., Wang, H. L., Zhao, S.-Hu., and Zhang, X.-J. (2022) Discovery a novel hybrid with resveratrol and hans ester derivatives as activators induce autophagic cell death in tumoral NCI-H460 cells through production of ROS, Res. Sq., doi: 10.21203/rs.3.rs-1329819/v1.
- Hafez, H. N., Abbas, H.-A. S., and El-Gazzar, A.-R. B. A. (2008) Synthesis and evaluation of analgesic, anti-inflammatory and ulcerogenic activities of some triazolo- and 2-pyrazolyl-pyrido[2,3-d]-pyrimidines, Acta Pharm., 58, 359-378, doi: 10.2478/v10007-008-0024-1.
- Sayed, H. H., Morsy, E. M. H., and Flefel, E. M. (2010) Synthesis and reactions of some novel Nicotinonitrile, Thiazolotriazole, and Imidazolotriazole derivatives for antioxidant evaluation, Synthetic Commun., 40, 1360-1370, doi: 10.1080/00397910903079631.
- Hsieh, C.-Y., Li, L.-H., Lam, Y., Fang, Z., Gan, C. H., Rao, Y. K., et al. (2020) Synthetic 4-hydroxy Auxarconjugatin B, a novel autophagy inducer, attenuates gouty inflammation by inhibiting the NLRP3 inflammasome, Cells, 9, E279, doi: 10.3390/cells9020279.
- Luo, G., Jian, Z., Zhu, Y., Zhu, Y., Chen, B., Ma, R., et al. (2019) Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress, Int. J. Mol. Med., 43, 2033-2043, doi: 10.3892/ijmm.2019.4125.
- Sun, T., Hu, Y., He, W., Shang, Y., Yang, X., Gong, L., et al. (2020) SRT2183 impairs ovarian cancer by facilitating autophagy, Aging (Albany NY), 12, 24208-24218, doi: 10.18632/aging.104126.
- Kim, M. J., Kang, Y. J., Sung, B., Jang, J. Y., Ahn, Y. R., Oh, H. J., et al. (2020) Novel SIRT inhibitor, MHY2256, induces cell cycle arrest, apoptosis, and autophagic cell death in HCT116 human colorectal cancer cells, Biomol. Ther. (Seoul), 28, 561-568, doi: 10.4062/biomolther.2020.153.
- Viana, R., Aguado, C., Esteban, I., Moreno, D., Viollet, B., Knecht, E., et al. (2008) Role of AMP-activated protein kinase in autophagy and proteasome function, Biochem. Biophys. Res. Commun., 369, 964-968, doi: 10.1016/j.bbrc.2008.02.126.
- Jaune, E., Cavazza, E., Ronco, C., Grytsai, O., Abbe, P., Tekaya, N., et al. (2021) Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies, Cell Death Dis., 12, 64, doi: 10.1038/s41419-020-03344-6.
- Pasquier, B. (2015) SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells, Autophagy, 11, 725-726, doi: 10.1080/15548627.2015.1033601.
- Zhang, L., Fu, L., Zhang, S., Zhang, J., Zhao, Y., Zheng, Y., et al. (2017) Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo, Chem. Sci., 8, 2687-2701, doi: 10.1039/c6sc05368h.
- Zhu, Z., Liu, L.-F., Su, C.-F., Liu, J., Tong, B. C.-K., Iyaswamy, A., et al. (2022) Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy, Acta Pharmacol. Sin., 43, 2511-2526, doi: 10.1038/s41401-022-00871-0.
- Qiao, C.-M., Sun, M.-F., Jia, X.-B., Shi, Y., Zhang, B.-P., Zhou, Z.-L., et al. (2020) Sodium butyrate causes α-synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway, Exp. Cell Res., 387, 111772, doi: 10.1016/j.yexcr.2019.111772.
- Tang, Y., Chen, Y., Jiang, H., and Nie, D. (2011) Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death, Cell Death Differ., 18, 602-618, doi: 10.1038/cdd.2010.117.
- Zhang, J., Yi, M., Zha, L., Chen, S., Li, Z., Li, C., et al. (2016) Sodium butyrate induces endoplasmic reticulum stress and autophagy in colorectal cells: implications for apoptosis, PLoS One, 11, e0147218, doi: 10.1371/journal. pone.0147218.
- Pant, K., Saraya, A., and Venugopal, S. K. (2017) Oxidative stress plays a key role in butyrate-mediated autophagy via Akt/mTOR pathway in hepatoma cells, Chem. Biol. Interact., 273, 99-106, doi: 10.1016/j.cbi.2017.06.001.
- Zhou, C., Li, L., Li, T., Sun, L., Yin, J., Guan, H., et al. (2020) SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α, J. Mol. Med. (Berl), 98, 1189-1202, doi: 10.1007/s00109-020-01947-2.
- Engevik, M. A., Luk, B., Chang-Graham, A. L., Hall, A., Herrmann, B., Ruan, W., et al. (2019) Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways, mBio, 10, e01087-19, doi: 10.1128/mBio.01087-19.
- Schulthess, J., Pandey, S., Capitani, M., Rue-Albrecht, K. C., Arnold, I., Franchini, F., et al. (2019) The short chain fatty acid butyrate imprints an antimicrobial program in macrophages, Immunity, 50, 432-445.e7, doi: 10.1016/ j.immuni.2018.12.018.
- Levine, B., Sinha, S. C., and Kroemer, G. (2008) Bcl-2 family members: Dual regulators of apoptosis and autophagy, Autophagy, 4, 600-606, doi: 10.4161/auto.6260.
- Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J.-C., Gautier, F., Juin, P., et al. (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1, EMBO J., 26, 2527-2539, doi: 10.1038/sj.emboj.7601689.
- Escariba Ruiz, P. V., Busquetes Xaubet, X., Teres Jimenez, S., Barcelo Coblijn, G., Llado Canellas, V., Marcilla Etxenike, A., et al. (2010) Patent: Use of derevatives of polyunsaturated fatty acids as medicaments, WO2010106211, 23.09.2010.
- Erazo, T., Lorente, M., López-Plana, A., Muñoz-Guardiola, P., Fernández-Nogueira, P., García-Martínez, J. A., et al. (2016) The new antitumor drug ABTL0812 inhibits the Akt/mTORC1 axis by upregulating Tribbles-3 pseudokinase, Clin. Cancer Res., 22, 2508-2519, doi: 10.1158/1078-0432.CCR-15-1808.
- Bhagat, V., and Verchere, C. B. (2023) A small molecule improves diabetes in mice expressing human islet amyloid polypeptide, Islets, 15, 12-15, doi: 10.1080/19382014.2022.2163829.
- Kataura, T., Tashiro, E., Nishikawa, S., Shibahara, K., Muraoka, Y., Miura, M., et al. (2021) A chemical genomics-aggrephagy integrated method studying functional analysis of autophagy inducers, Autophagy, 17, 1856-1872, doi: 10.1080/15548627.2020.1794590.
- Han, S. and Lee, J.-H. (2020) Novel catechol derivatives or salt thereof, processes for preparing the same, and pharmaceutical compositions comprising the same. Patent: WO2020017878A1, 23.01.2020.
- Suresh, S. N., Chavalmane, A. K., Pillai, M., Ammanathan, V., Vidyadhara, D. J., Yarreiphang, H., et al. (2018) Modulation of autophagy by a small molecule inverse agonist of ERRα is neuroprotective, Front. Mol. Neurosci., 11, 109, doi: 10.3389/fnmol.2018.00109.
- Ganesher, A., Chaturvedi, P., Sahai, R., Meena, S., Mitra, K., Datta, D., et al. (2020) New Spisulosine Derivative promotes robust autophagic response to cancer cells, Eur. J. Med. Chem., 188, 112011, doi: 10.1016/j.ejmech.2019.112011.
- Kim, S.-J., Devgan, A., Miller, B., Lee, S. M., Kumagai, H., Wilson, K. A., et al. (2022) Humanin-induced autophagy plays important roles in skeletal muscle function and lifespan extension, Biochim. Biophys. Acta Gen. Subj., 1866, 130017, doi: 10.1016/j.bbagen.2021.130017.
- Maestro, I., de la Ballina, L. R., Simonsen, A., Boya, P., and Martinez, A. (2021) Phenotypic assay leads to discovery of mitophagy inducers with therapeutic potential for Parkinson’ s disease, ACS Chem. Neurosci., 12, 4512-4523, doi: 10.1021/acschemneuro.1c00529.
- Palomo, V., Perez, D. I., Roca, C., Anderson, C., Rodríguez-Muela, N., Perez, C., et al. (2017) Subtly modulating glycogen synthase kinase 3 β: allosteric inhibitor development and their potential for the treatment of chronic diseases, J. Med. Chem., 60, 4983-5001, doi: 10.1021/acs.jmedchem.7b00395.
- Mehellou, Y. (2023) Parkinson’ s disease: Are PINK1 activators inching closer to the clinic?, ACS Med. Chem. Lett., 14, 870-874, doi: 10.1021/acsmedchemlett.3c00070.
- Chin, R. M., Rakhit, R., Ditsworth, D., Wang, C., Bartholomeus, J., Liu, S., et al. (2023) Pharmacological PINK1 activation ameliorates pathology in Parkinson’s disease models, bioRxiv, doi: 10.1101/2023.02.14.528378.
- Cen, X., Xu, X., and Xia, H. (2021) Targeting MCL1 to induce mitophagy is a potential therapeutic strategy for Alzheimer disease, Autophagy, 17, 818-819, doi: 10.1080/15548627.2020.1860542.
- Gatliff, J., East, D., Crosby, J., Abeti, R., Harvey, R., Craigen, W., et al. (2014) TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control, Autophagy, 10, 2279-2296, doi: 10.4161/15548627. 2014.991665.
- Narendra, D., Tanaka, A., Suen, D.-F., and Youle, R. J. (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, J. Cell. Biol., 183, 795-803, doi: 10.1083/jcb.200809125.
- Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M., and Youle, R. J. (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both, Autophagy, 6, 1090-1106, doi: 10.4161/auto.6.8.13426.
- Wang, Y., Nartiss, Y., Steipe, B., McQuibban, G. A., and Kim, P. K. (2012) ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy, Autophagy, 8, 1462-1476, doi: 10.4161/auto.21211.
- Kenwood, B. M., Weaver, J. L., Bajwa, A., Poon, I. K., Byrne, F. L., Murrow, B. A., et al. (2014) Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane, Mol. Metab., 3, 114-123, doi: 10.1016/ j.molmet.2013.11.005.
- Chu, C. T., Ji, J., Dagda, R. K., Jiang, J. F., Tyurina, Y. Y., Kapralov, A. A., et al. (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells, Nat. Cell. Biol., 15, 1197-1205, doi: 10.1038/ncb2837.
- Dagda, R. K., Zhu, J., Kulich, S. M., and Chu, C. T. (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’ s disease, Autophagy, 4, 770-782, doi: 10.4161/auto.6458.
- Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans, Nature, 521, 525-528, doi: 10.1038/nature14300.
- Zhu, J. H., Gusdon, A. M., Cimen, H., Van Houten, B., Koc, E., and Chu, C. T. (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2, Cell Death Dis., 3, e312, doi: 10.1038/cddis.2012.46.
- Hoshino, A., Ariyoshi, M., Okawa, Y., Kaimoto, S., Uchihashi, M., Fukai, K., et al. (2014) Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes, Proc. Natl. Acad. Sci. USA, 111, 3116-3121, doi: 10.1073/pnas.1318951111.
- Hoshino, A., Mita, Y., Okawa, Y., Ariyoshi, M., Iwai-Kanai, E., Ueyama, T., et al. (2013) Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart, Nat. Commun., 4, 2308, doi: 10.1038/ncomms3308.
- Bensaad, K., Cheung, E. C., and Vousden, K. H. (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy, EMBO J., 28, 3015-3026, doi: 10.1038/emboj.2009.242.
- East, D. A., Fagiani, F., Crosby, J., Georgakopoulos, N. D., Bertrand, H., Schaap, M., et al. (2014) PMI: a ΔΨm independent pharmacological regulator of mitophagy, Chem. Biol., 21, 1585-1596, doi: 10.1016/j.chembiol.2014.09.019.
- Zhu, S., Hu, X., Bennett, S., Xu, J., and Mai, Y. (2022) The molecular structure and role of humanin in neural and skeletal diseases, and in tissue regeneration, Front. Cell Dev. Biol., 10, 823354, doi: 10.3389/fcell.2022.823354.
- Bosch-Barrera, J., Moran, T., Estévez-García, P., Martín-Martorell, P., Sabatier, R., Nadal, E., et al. (2023) Phase 2 clinical trial of the proautophagic drug ABTL0812 combined with paclitaxel and carboplatin in first-line patients with advanced squamous non-small cell lung carcinoma, JCO, 41, 9059-9059, doi: 10.1200/ JCO.2023.41.16_suppl.9059.
- Ji, C. H., Kim, H. Y., Lee, M. J., Heo, A. J., Park, D. Y., Lim, S., et al. (2022) The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system, Nat. Commun., 13, 904, doi: 10.1038/ s41467-022-28520-4.
- Li, Z., Zhu, C., Ding, Y., Fei, Y., and Lu, B. (2020) ATTEC: a potential new approach to target proteinopathies, Autophagy, 16, 185-187, doi: 10.1080/15548627.2019.1688556.
- Korolenko, T. A., Ovsyukova, M. V., Bgatova, N. P., Ivanov, I. D., Makarova, S. I., Vavilin, V. A., et al. (2022) Trehalose activates hepatic and myocardial autophagy and has anti-inflammatory effects in db/db diabetic mice, Life (Basel), 12, 442, doi: 10.3390/life12030442.
- Korolenko, T. A., Dubrovina, N. I., Ovsyukova, M. V., Bgatova, N. P., Tenditnik, M. V., Pupyshev, A. B., et al. (2021) Treatment with autophagy inducer trehalose alleviates memory and behavioral impairments and neuroinflammatory brain processes in db/db mice, Cells, 10, 2557, doi: 10.3390/cells10102557.
- Lipatova, A., Krasnov, G., Vorobyov, P., Melnikov, P., Alekseeva, O., Vershinina, Y., et al. (2021) Effects of Siberian fir terpenes extract Abisil on antioxidant activity, autophagy, transcriptome and proteome of human fibroblasts, Aging (Albany NY), 13, 20050-20080, doi: 10.18632/aging.203448.
Дополнительные файлы
