Удлинение линкерных последовательностей между антиген-узнающими модулями обеспечивает более эффективную наработку биспецифичных наноантител в периплазме E. coli
- Авторы: Тиллиб С.В.1,2, Горяйнова О.С.1,2
-
Учреждения:
- Институт биологии гена РАН
- Институт молекулярной биологии им. В.А. Энгельгардта РАН
- Выпуск: Том 89, № 5 (2024)
- Страницы: 920-928
- Раздел: Статьи
- URL: https://ter-arkhiv.ru/0320-9725/article/view/665761
- DOI: https://doi.org/10.31857/S0320972524050136
- EDN: https://elibrary.ru/YNRGGV
- ID: 665761
Цитировать
Аннотация
Использование технологии получения однодоменных антител (молекул NANOBODY®, также обозначаемых как наноантитела, нАТ, или молекул на основе других стабильных белковых структур) и их производных для решения актуальных задач биомедицины становится всё более популярным. Действительно, формат одного небольшого хорошо растворимого белка со стабильной структурой, полнофункционального в плане специфического узнавания, очень удобен как модуль для создания мультивалентных, би-/олигоспецифичных таргетных генно-инженерных молекул и структур. Наработка нАТ в периплазме бактерии E. coli является очень удобным и достаточно универсальным способом получения аналитических количеств нАТ для первичного изучения свойств этих молекул и выбора наиболее перспективных вариантов. Сложнее пока обстоит дело с наработкой в таких же условиях би- и мультивалентных производных первично отбираемых нАТ. В данной работе разработаны и применены удлинённые линкерные последовательности (52 и 86 а.о.) между антиген-узнающими модулями в клонируемых экспрессионных конструкциях с целью повышения эффективности наработки биспецифичных наноантител (бсНТ) в периплазме бактерий E. coli. Три варианта модельных бсНТ, описанные в этом исследовании, были наработаны в периплазме бактерий и выделены в растворимом виде с сохранением функциональности всех белковых доменов. Если ранее наши попытки наработать в периплазме бсНТ с традиционными линкерами длиной не более 30 а.о. были безуспешными, то применённые здесь удлинённые линкеры обеспечили существенно более эффективную наработку бсНТ, сравнимую по эффективности с традиционной наработкой исходных мономерных нАТ. Использование сильно удлинённых линкеров, предположительно, может быть полезным для повышения эффективности наработки также и других бсНТ, и подобных им молекул в периплазме бактерий E. coli.
Ключевые слова
Полный текст

Об авторах
С. В. Тиллиб
Институт биологии гена РАН; Институт молекулярной биологии им. В.А. Энгельгардта РАН
Автор, ответственный за переписку.
Email: tillib@genebiology.ru
Россия, 119334, Москва; 119991, Москва
О. С. Горяйнова
Институт биологии гена РАН; Институт молекулярной биологии им. В.А. Энгельгардта РАН
Email: tillib@genebiology.ru
Россия, 119334, Москва; 119991, Москва
Список литературы
- Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E. B, Bendahman, N., and Hamers, R. (1993) Naturally occurring antibodies devoid of light chains, Nature, 363, 446-448, https://doi.org/ 10.1038/363446a0.
- Flajnik, M. F., and Kasahara, M. (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures, Nat. Rev. Genet., 11, 47-59, https://doi.org/10.1038/nrg2703.
- Bannas, P., Hambach, J., and Koch-Nolte, F. (2017) Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics, Front Immunol., 8, 1603, https://doi.org/10.3389/fimmu.2017.01603.
- Jovčevska, I., and Muyldermans, S. (2020) The Therapeutic Potential of Nanobodies, BioDrugs, 34, 11-26, https:// doi.org/10.1007/s40259-019-00392-z.
- Тиллиб С. В. (2020) Перспективы использования однодоменных антител в биомедицине, Мол. Биол., 54, 362-373, https://doi.org/10.31857/S0026898420030167.
- Stone, E., Hirama, T., Tanha, J., Tong-Sevinc, H., Li, S., MacKenzie, C. R., and Zhang, J. (2007) The assembly of single domain antibodies into bispecific decavalent molecules, J. Immunol Methods, 318, 88-94, https://doi.org/10.1016/ j.jim.2006.10.006.
- Hultberg, A., Temperton, N. J., Rosseels, V., Koenders, M., Gonzalez-Pajuelo, M., Schepens, B., Ibañez, L. I, Vanlandschoot, P., Schillemans, J., Saunders, M., Weiss, R. A., Saelens, X., Melero, J. A., Verrips, C. T., Van Gucht, S., and de Haard, H. J. (2011) Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules, PLoS One, 6, e17665, https://doi.org/10.1371/journal.pone.0017665.
- Tillib, S., Ivanova, T. I., Vasilev, L. A., Rutovskaya, M. V., Saakyan, S. A., Gribova, I. Y., Tutykhina, I. L., Sedova, E. S., Lysenko, A. A., Shmarov, M. M., Logunov, D. Y., Naroditsky, B. S., and Gintsburg, A. L. (2013) Formatted single-domain antibodies can protect mice against infection with influenza virus (H5N2), Antiviral Res., 97, 245-254, https://doi.org/10.1016/j.antiviral.2012.12.014.
- Huet, H. A., Growney, J. D., Johnson, J. A., Li, J., Bilic, S., Ostrom, L., Zafari, M., Kowal, C., Yang, G., Royo, A., et al. (2014) Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction, mAbs, 6, 1560-1570, https://doi.org/10.4161/19420862.2014.975099.
- Laursen, N. S., Friesen, R. H. E., Zhu, X., Jongeneelen, M., Blokland, S., Vermond, J., van Eijgen, A., Tang, C., et al. (2018) Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin, Science, 362, 598-602, https://doi.org/10.1126/science.aaq0620.
- Efimov, G. A., Kruglov, A. A., Khlopchatnikova, Z. V., Rozov, F. N., Mokhonov, V. V., Rose-John, S., Scheller, J., Gordon, S., Stacey, M., Drutskaya, M. S., Tillib, S. V., and Nedospasov, S. A. (2016) Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source, Proc. Natl. Acad. Sci. USA, 113, 3006-3011, https://doi.org/10.1073/pnas.1520175113.
- Hanke, L., Das, H., Sheward, D. J., Perez Vidakovics, L., Urgard, E., Moliner-Morro, A., Kim, C., Karl, V., Pankow, A., Smith, N. L., Porebski, B., Fernandez-Capetillo, O., et al. (2022) A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo, Nat. Commun., 13, 155, https://doi.org/10.1038/s41467-021-27610-z.
- Liu, Y., Ao, K., Bao, F., Cheng, Y., Hao, Y., Zhang, H., Fu, S., Xu, J., and Wu, Q. (2022) Development of a bispecific nanobody targeting CD20 on B-cell lymphoma cells and CD3 on T cells, Vaccines (Basel), 10, 1335, https://doi.org/10.3390/vaccines10081335.
- Ma, H., Zhang, X., Zeng, W., Zhou, J., Chi, X., Chen, S., Zheng, P., Wang, M., Wu, Y., Zhao, D., et al. (2022) A bispecific nanobody dimer broadly neutralizes SARS-CoV-1 & 2 variants of concern and offers substantial protection against Omicron via low-dose intranasal administration, Cell Discov., 8, 132, https://doi.org/10.1038/s41421-022-00497-w.
- De Marco, A. (2015) Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs, Microb. Cell Factories, 14, 125, https://doi.org/10.1186/s12934-015-0320-7.
- Sandomenico, A., Sivaccumar, J. P., and Ruvo, M. (2020) Evolution of Escherichia coli expression system in producing antibody recombinant fragments, Int. J. Mol. Sci., 21, 6324, https://doi.org/10.3390/ijms21176324.
- Huleani, S., Roberts, M. R., Beales, L., and Papaioannou, E. H. (2022) Escherichia coli as an antibody expression host for the production of diagnostic proteins: significance and expression, Crit. Rev. Biotechnol., 42, 756-753, https://doi.org/10.1080/07388551.2021.1967871.
- Skerra, A., and Plückthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli, Science, 240, 1038-1041, https://doi.org/10.1126/science.3285470.
- Le Gall, F., Reusch, U., Little, M., and Kipriyanov, S. M. (2004) Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody, Protein Eng. Des. Sel., 17, 357-366, https://doi.org/10.1093/protein/gzh039.
- Wang, Q., Chen, Y., Park, J., Liu, X., Hu, Y., Wang, T., McFarland, K., and Betenbaugh, M. J. (2019) Design and production of bispecific antibodies, Antibodies (Basel), 8, 43, https://doi.org/10.3390/antib8030043.
- Huang, C., Huang, J., Zhu, S., Tang, T., Chen, Y., and Qian, F. (2023) Chem. Eng. Sci., 270, 118521, https://doi.org/ 10.1016/j.ces.2023.118521.
- Roobrouck, A., and Stortelers, C. (2015) Bispecific nanobodies. Applicant – ABLYNX NV (Belgium). WIPO/PCT patent publication number WO2015044386 A1. Publication date April 2, 2015.
- Zettl, I., Ivanova, T., Zghaebi, M., Rutovskaya, M. V., Ellinger, I., Goryainova, O., Kollárová, J., Villazala-Merino, S., Lupinek, C., Weichwald, C., Drescher, A., Eckl-Dorna, J., Tillib, S. V., and Flicker, S. (2022) Generation of high affinity ICAM-1-specific nanobodies and evaluation of their suitability for allergy treatment, Front. Immunol., 13, 1022418, https://doi.org/10.3389/fimmu.2022.1022418.
- Zettl, I., Ivanova, T., Strobl, M. R., Weichwald, C., Goryainova, O., Khan, E., Rutovskaya, M. V., Focke-Tejkl, M., Drescher, A., Bohle, B., Flicker, S., and Tillib, S. V. (2022) Isolation of nanobodies with potential to reduce patients’ IgE binding to Bet v 1, Allergy, 77, 1751-1760, https://doi.org/10.1111/all.15191.
- Горяйнова О. С., Иванова Т. И., Рутовская М. В., Тиллиб С. В. (2017) Метод параллельного и последовательного генерирования однодоменных антител для протеомного анализа плазмы крови человека, Мол. Биол., 51, 985-996.
- Conrath, K. E., Lauwereys, M., Galleni, M., Matagne, A., Frère, J. M., Kinne, J., Wyns, L., and Muyldermans, S. (2001) Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae, Antimicrob. Agents Chemother., 45, 2807-2812, https://doi.org/10.1128/AAC.45.10.2807-2812.2001.
- Тиллиб С. В., Горяйнова О. С.(2024) Биспецифичные нанотела с удлиненными линкерными последовательностями между антиген-узнающими модулями для наработки в периплазме E. coli. Заявка на патент РФ № 2024101830 (от 25.01.2024), ФИПС, Москва.
- Baral, T. N., and Arbabi-Ghahroudi, M. (2012) Expression of single-domain antibodies in bacterial systems, Methods Mol Biol., 911, 257-275, https://doi.org/10.1007/978-1-61779-968-6_16.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
Дополнительные файлы
