Numerical simulation of volumetric ultrasound heating of biological tissue with surface cooling

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

One of the undesirable effects of using ultrasound for extracorporeal therapy is skin overheating, caused by both ultrasound absorption and contact with the heated surface of the acoustic transducer. To suppress this effect, a forcibly cooled contact medium can be placed between the skin and the irradiating surface. A novel ultrasonic applicator implementing this approach has recently been proposed and developed at SFU. It uses a rectangular piezoelectric transducer bonded to an aluminum plate for volumetric heating of subcutaneous biotissue. The plate is cooled by circulating cold water through laterally drilled channels. This paper presents a numerical algorithm for calculating the three-dimensional temperature field in the tissue during the operation of this applicator. The simulation was based on the inhomogeneous heat equation. Experimental acoustic holography data obtained for the developed transducer were used to calculate the heat sources in the tissue. An example of heating bovine liver tissue ex vivo is considered, with irradiation times ranging from several seconds to several minutes. The simulation results were compared with experimental data on tissue thermal ablation at an acoustic power of 12 W and an ultrasound frequency of 6.96 MHz. It is shown that the combination of thermal tissue exposure and contact boundary cooling allows for volumetric tissue heating with a temperature maximum at a depth of 8 to 15 mm, while maintaining a negligible temperature change at depths up to 2–3 mm.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Pestova

Moscow State University

Хат алмасуға жауапты Автор.
Email: pestova.pa16@physics.msu.ru

физический факультет

Ресей, Moscow, 119991

A. Rybyanets

Research Institute of Physics

Email: pestova.pa16@physics.msu.ru
Ресей, Rostov on Don, 344090

O. Sapozhnikov

Moscow State University

Email: pestova.pa16@physics.msu.ru

физический факультет

Ресей, Moscow, 119991

M. Karzova

Moscow State University

Email: pestova.pa16@physics.msu.ru

физический факультет

Ресей, Moscow, 119991

P. Yuldashev

Moscow State University

Email: pestova.pa16@physics.msu.ru

физический факультет

Ресей, Moscow, 119991

S. Tsysar

Moscow State University

Email: pestova.pa16@physics.msu.ru

физический факультет

Ресей, Moscow, 119991

L. Kotelnikova

Moscow State University

Email: pestova.pa16@physics.msu.ru

физический факультет

Ресей, Moscow, 119991

I. Shvetsov

Research Institute of Physics

Email: pestova.pa16@physics.msu.ru
Ресей, Rostov on Don, 344090

V. Khokhlova

Moscow State University

Email: pestova.pa16@physics.msu.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Еняков А.М. Метрологические проблемы применения ультразвука в физиотерапии // АСМ. 2015. Т. 3. № 4. С. 152–193.
  2. Mougenot C., Köhler M.O., Enholm J., Quesson B., Moonen C. Quantification of near-field heating during volumetric MR-HIFU ablation // Med. Phys. 2011. V. 38. P. 272–282.
  3. Crouzet S., Chapelon J.Y., Rouviere O., Mege-Lechevallier F., Colombel M., Tonoli-Catez H., Martin X., Gelet A. Whole-gland ablation of localized prostate cancer with high-intensity focused ultrasound oncologic outcomes and morbidity in 1002 patients // Eur. Urol. 2014. V. 65. P. 907–914.
  4. Laubach H.J., Makin I.R., Barthe P.G., Slayton M.H., Manstein D. Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin // Dermatol. Surg. 2008. V. 34. № 5. P. 727–734.
  5. Бэйли М.Р., Хохлова В.А., Сапожников О.А., Каргл С.Г., Крам Л.А. Физические механизмы воздействия терапевтического ультразвука на биологическую ткань // Акуст. журн. 2003. Т. 49. № 4. С. 437–464.
  6. Haar G. Therapeutic applications of ultrasound // Prog. Biophys. Mol. Biol. 2007. V. 93. P. 111–129.
  7. Ko E.J., Hong J.Y., Kwon T.R., Choi E.J., Jang Y.J., Choi S.Y., Yoo K.H., Kim S.Y., Kim B.J. Efficacy and safety of non-invasive body tightening with high-intensity focused ultrasound (HIFU) // Skin Res. Technol. 2017. V. 23. № 4. P. 558–562.
  8. Al-Jumaily A.M., Liaquat H., Paul S. Focused ultrasound for dermal applications // Ultrasound Med. Biol. 2024. V. 50. № 1. P. 8–17.
  9. Day D. Microfocused ultrasound for facial rejuvenation: current perspectives // Res. rep. focus. ultrasound. 2014. V. 2. P. 13–17.
  10. Gutowski K.A. Microfocused ultrasound for skin tightening // Clin. Plast. Surg. 2016. V. 43. № 3. P. 577–582.
  11. Oni G., Hoxworth R., Teotia S., Brown S., Kenkel J.M. Evaluation of a microfocused ultrasound system for improving skin laxity and tightening in the lower face // Aesthet. Surg. J. 2014. V. 34. № 7. P. 1099–1110.
  12. White W.M., Makin I.R., Barthe P.G., Slayton M.H., Gliklich R.E. Selective creation of thermal injury zones in the superficial musculoaponeurotic system using intense ultrasound therapy: a new target for noninvasive facial rejuvenation // Arch. Facial Plast. Surg. 2007. V. 9. № 1. P. 22–29.
  13. MacGregor J.L., Tanzi E.L. Microfocused ultrasound for skin tightening // Semin Cutan Med. Surg. 2013. V. 32. № 1. P. 18–25.
  14. Checcucci E. et al. The real-time intraoperative guidance of the new HIFU Focal-One platform allows to minimize the perioperative adverse events in salvage setting // J. Ultrasound. 2022. V. 25. № 2. P. 225–232.
  15. Lee H.J., Lee M.H., Lee S.G., Yeo U.C., Chang S.E.. Evaluation of a novel device, high-intensity focused ultrasound with a contact cooling for subcutaneous fat reduction // Lasers Surg. Med. 2016. V. 48. № 9. P. 878–886.
  16. Brown S.A., Greenbaum L., Shtukmaster S., Zadok Y., Ben-Ezra S., Kushkuley L. Characterization of nonthermal focused ultrasound for noninvasive selective fat cell disruption (lysis): technical and preclinical assessment // Plast. Reconstr. Surg. 2009. V. 124. № 1. P. 92–101.
  17. Hongcharu W., Boonchoo K., Gold M.H. The efficacy and safety of the high-intensity parallel beam ultrasound device at the depth of 1.5 mm for skin tightening // J. Cosmet. Dermatol. 2023. V. 22. № 5. P. 1488–1494.
  18. Рыбянец А.Н., Швецов И.А., Швецова Н.А., Цысарь С.А., Котельникова Л.М., Хохлова В.А., Сапожников О.А. Cочетание объемного ультразвукового нагрева с поверхностным охлаждением как новый метод пространственной и временной локализации теплового воздействия на биоткани // Сборник Трудов XXXVI сессии Российского акустического общества. М.: ГЕОС, 2024. С. 1180–1186.
  19. Rybyanets A.N., Shvetsov I.A., Shvetsova N.A., Marakhovsky M.A., Kolpacheva N.A. Microstructure, complex electromechanical parameters and dispersion characteristics of ferroelectrically “hard” piezoceramics // J. Adv. Dielectrics. 2025. V. 15. № 3. P. 2540001.
  20. Sapozhnikov O.A., Tsysar S.A., Khokhlova V.A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am. 2015. V. 138. № 3. P. 1515–1532.
  21. Nikolaev D.A., Tsysar S.A., Khokhlova V.A., Kreider W., Sapozhnikov O.A. Holographic extraction of plane waves from an ultrasound beam for acoustic characterization of an absorbing layer of finite dimensions // J. Acoust. Soc. Am. 2021. V. 149. № 1. P. 386.
  22. Wong G.S., Zhu S. Speed of sound in seawater as a function of salinity, temperature, and pressure // J. Acoust. Soc. Am. 1995. V. 97. № 3. P. 1732–1736.
  23. Keravnou C.P., Izamis M.-L., Averkiou M.A. Method for estimating the acoustic pressure in tissues using low-amplitude measurements in water // Ultrasound Med. Biol. 2015. V. 41. № 11. P. 3001–3012.
  24. Андрияхина Ю.С., Карзова М.М., Юлдашев П.В., Хохлова В.А. Ускорение тепловой абляции объемов биологической ткани с использованием фокусированных ультразвуковых пучков с ударными фронтами // Акуст. журн. 2019. Т. 65. № 2. С. 1—12.
  25. Duck F.A. Physical properties of tissue. London: Academic Press, 1990.
  26. https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
  27. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 736 с.
  28. Пестова П.А., Карзова М. М., Юлдашев П. В., Крайдер У., Хохлова В.А. Влияние траектории перемещения фокуса на равномерность температурного поля при импульсном воздействии мощного ультразвукового пучка на биологическую ткань // Акуст. журн. 2021. Т. 57. № 3. С. 250–259.
  29. Sapareto S.A., Dewey W.C. Thermal dose determination in cancer therapy // Int. J. Radiat. Oncol. Biol. Phys. 1984. V. 10. № 6. P. 787–800.
  30. Хилл К.Р., Бэмбер Дж. Ультразвук в медицине. Физические основы применения. Под ред. тер Хаар Г. Пер. с англ. М.: Физматлит, 2008.
  31. Fan X., Hynynen K. Ultrasound surgery using multiple sonications — treatment time considerations // Ultrasound Med. Biol. 1996. V. 22. № 4. P. 471–482.
  32. Venkatesan A.M., Partanen A., Pulanic T.K., Dreher M.R., Fischer J., Zurawin R.K., Muthupillai R., Sokka S., Nieminen H.J., Sinaii N., Merino M., Wood B.J., Stratton P. Magnetic resonance imaging-guided volumetric ablation of symptomatic leiomyomata: correlation of imaging with histology // J. Vasc. Interv. Radiol. 2012. V. 23. № 6. P. 786–794.
  33. Крамаренко Н.В. Обзор способов вывода критериев подобия в механике // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. Науки. 2021. T. 25. №1. С. 163–192.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. (a) — Schematic diagram of the numerical experiment simulating the physical experiment ex vivo. A flat ultrasonic emitter, which is a glued rectangular piezoelectric plate (PP) and an aluminum plate (AP) with channels along its lateral sections (LS), was applied to a sample of beef liver with an initial temperature of 23°C. The AP was thermostatted by circulating cold water with a temperature of 14°C through its channels. The spatial distribution of the ultrasonic field pressure amplitude in the tissue is shown inside the sample. (b) — Front view and dimensions of the piezoelectric plate (PP is shown in brown) and the cooling plate (AP is shown in gray). The numerical window is shown in blue.

Жүктеу (123KB)
3. Fig. 2. Boundary conditions on the surface of the emitter (the outer surface of the aluminum plate) at z = 0, used to model the ultrasonic field created in the tissue: distributions of (a) the amplitude and (b) the phase of the pressure for an acoustic power of the emitter of 12 W. The dashed lines show the nominal dimensions of the piezoelectric plate 2.5 × 1.5 cm.

Жүктеу (133KB)
4. Fig. 3. Spatial distributions of the pressure amplitude in water in two axial planes xz (upper row) and yz (lower row) at a frequency of 6.96 MHz for an acoustic power of the emitter of 12 W. The distributions are calculated (a) based on acoustic holography data for the emitter under consideration and (b) for an ideal piston emitter with nominal dimensions.

Жүктеу (242KB)
5. Fig. 4. Numerically calculated spatial distributions of the pressure amplitude in the tissue in the axial planes (a) — xz, (b) — yz for a frequency of 6.96 MHz and an acoustic power of the emitter of 12 W.

Жүктеу (90KB)
6. Fig. 5. Spatial distribution of the power density of thermal antisymmetric sources Q in the tissue in the axial planes (a) — xz and (b) — yz at an operating frequency of 6.96 MHz for an emitter power of 12 W.

Жүктеу (92KB)
7. Fig. 6. Spatial distributions of temperature in the tissue (a) — at time t = 60 s after switching on sample cooling and (b) — after establishing a stationary temperature distribution at time t = 80 min. (c) — Dependences of sample temperature T on time t on the emitter axis for characteristic depths: 3 cm (blue curve), 1.5 cm (red curve), 0.2 cm (yellow curve).

Жүктеу (163KB)
8. Fig. 7. Spatial temperature distributions in axial planes (a, c) — xz and (b, d) — yz at the end of irradiation of a beef liver sample with a combination of heating and cooling. The tissue irradiation time was (a, b) — t = 3 min and (c, d) — t = 5 min. The white contour shows the region within which the thermal dose exceeded the threshold value after the sample had cooled for 2 min.

Жүктеу (117KB)
9. Fig. 8. Results of comparison of the results of (a, c) — numerical and (b, d) — physical experiments on irradiation of beef liver tissue ex vivo for an acoustic power of 12 W and an irradiation time of (a, b) — 3 min and (c, d) — 5 min.

Жүктеу (105KB)

© The Russian Academy of Sciences, 2025