On the Mechanism of Lateral Asymmetry of Noise Emission from a Propeller Installed Near a Wing

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The effect of lateral asymmetry in the radiation pattern of a propeller installed near the wing is studied. Within the framework of a simplified theoretical model of the propeller loading noise and its shielding by a half-plane, as well as using numerical modeling of the interaction of the propeller with a flat finite plate, it is shown that when the propeller and the scattering surface are close to each other, a significant lateral asymmetry of the propeller tonal noise emission in the far field appears. The mechanism of this effect, which accompanies the symmetrical sound directivity of the propeller itself and the symmetry of the scatterer (wing), is associated with the phased summation of the sound field emitted directly by the propeller and the secondary sound field generated on the surface of the wing due to the scattering of disturbances (mainly hydrodynamic) created by the propeller on the leading edge of the wing. Thus, the study demonstrated that the presence of lateral asymmetry in the noise radiation pattern inherent in propeller-driven aircraft is a consequence of the interaction of the propellers and closely spaced wings.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Kopyev

Central Aerohydrodynamic Institute

Хат алмасуға жауапты Автор.
Email: aeroacoustics@tsagi.ru
Ресей, Moscow

N. Ostrikov

Central Aerohydrodynamic Institute

Email: aeroacoustics@tsagi.ru
Ресей, Moscow

G. Faranosov

Central Aerohydrodynamic Institute

Email: aeroacoustics@tsagi.ru
Ресей, Moscow

V. Titarev

Central Aerohydrodynamic Institute; Federal Computer Science and Control Research Center of the Russian Academy of Sciences

Email: aeroacoustics@tsagi.ru
Ресей, Moscow; Moscow

S. Denisov

Central Aerohydrodynamic Institute

Email: aeroacoustics@tsagi.ru
Ресей, Moscow

R. Akinshin

Central Aerohydrodynamic Institute

Email: aeroacoustics@tsagi.ru
Ресей, Moscow

Әдебиет тізімі

  1. Международные стандарты и Рекомендуемая практика. Приложение 16 к Конвенции о международной гражданской авиации. Охрана окружающей среды. Том 1. Авиационный шум. Изд. 7, 2014 г.
  2. Serrano J.R., Tiseira A.O., García-Cuevas L.M., Varela P. Computational Study of the Propeller Position Effects in Wing-Mounted, Distributed Electric Propulsion with Boundary Layer Ingestion in a 25 kg Remotely Piloted Aircraft // Drones 2021–2021, V. 5. No. 3. P. 56. https://doi.org/10.3390/drones5030056
  3. Carley M. Shielding of rotor noise by plates and wings // Acta Acustica. 2022. V. 6. No 27.
  4. Hanson L., Baskaran K., Zang B., Azarpeyvand M. Acoustic Shielding and Scattering Effects of a Propeller Mounted Above a Flat Plate // Proc.: Internoise 2022. Institute of Noise Control Engineering, 2022.
  5. Roger M., Acevedo-Giraldo D., Jacob M.C. Acoustic versus aerodynamic installation effects on a generic propeller-driven flying architecture // Int. J. Aeroacoustics. 2022. V. 21(5–7). P. 585–609.
  6. Hanson L., Baskaran K., Zang B., Azarpeyvand M. Aeroacoustic Interactions of a Trailing Edge Mounted Propeller and Flat Plate // In 28th AIAA/CEAS Aeroacoustics Conference, 2022, AIAA 2022–2937.
  7. Chaitanya P., Cho M., Palleja-Cabre S., Akiwate D.C., Joseph P., Westcott O., Ferraro M. Aeroacoustics source mechanisms of fixed-wing VTOL configuration // In AIAA AVIATION2023 Forum, AIAA 2023–3356
  8. Acevedo-Giraldo D., Roger M., Jacob M.C. Experimental Study of the Aerodynamic Noise of a Pair of Pusher-Propellers Installed Over a Wing // In AIAA AVIATION2023 Forum, AIAA 2023–3359.
  9. Ostrikov N.N., Denisov S.L. Airframe Shielding of Noncompact Aviation Noise Sources: Theory and Experiment // AIAA Paper 2015–2691, June 2015.
  10. Денисов С.Л., Копьев В.Ф., Остриков Н.Н., Фараносов Г.А., Чернышев С.А. Использование корреляционной модели случайных квадрупольных источников для расчета эффективности экранирования шума турбулентной струи на основе геометрической теории дифракции // Акуст. журн. 2020. Т. 66. № 5. С. 540–555.
  11. Денисов С.Л., Остриков Н.Н., Панкратов И.В. Исследование возможности замены планера самолета интегральной компоновки на плоский полигональный экран для оценки эффективности экранирования шума двигателей на основе геометрической теории дифракции // Акуст. журн. 2020. Т. 66. № 6. С. 622–631.
  12. Денисов С.Л., Остриков Н.Н., Гранич В.Ю. Проблемы снижения шума авиационных силовых установок с помощью эффекта экранирования // Акуст. журн. 2021. Т. 67. № 3. С. 298–302.
  13. Беляев И.В., Копьев В.Ф., Титарев В.А. Разработка нового подхода к расчету шума винтов с использованием суперкомпьютеров // Ученые записки ЦАГИ. 2014. Т. XLV. № 2. С. 78–106.
  14. Титарев В.А., Фараносов Г.А., Чернышев С.А., Батраков А.С. Численное моделирование влияния взаимного расположения винта и пилона на шум турбовинтового самолета // Акуст. журн. 2018. Т. 64. № 6. С. 722–736.
  15. Лазарев Л.А., Титарев В.А., Голубев А.Ю. Оптимизация силового набора подкрепленной оболочки под действием акустического поля винта // Акуст. журн. 2022. Т. 68. № 3. С. 323–329.
  16. Фелсен Л., Маркувиц И. Излучение и рассеяние волн. М: Издательство “Мир”, 1978. Т. 2. 555 с.
  17. Бычков О.П., Фараносов Г.А. Анализ взаимной связи модовой структуры пульсаций ближнего поля струи и шума взаимодействия струи и крыла // Акуст. журн. 2020. Т. 66. № 1. С. 34–45.
  18. Бычков О.П., Фараносов Г.А. Валидация двухточечной модели шума взаимодействия струи и крыла для реалистичной конфигурации // Акуст. журн. 2023. Т. 69. № 2. С. 146–154.
  19. Hirt C.W., Amsden A.A., Cook J.L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds // J. Comput. Phys. 1974. V. 14. P. 227–253.
  20. Gaburro E., Dumbser M., Castro M.J. Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes // Comput. and Fluid. 2017. V. 159. P. 254–275.
  21. Dumbser M., Käser M., Titarev V.A., Toro E.F. Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems // J. Computational Physics. 2007. V. 221. № 2. P. 693–723.
  22. Toro E.F., Spruce M., Speares W. Restoration of the contact surface in the Harten-Lax-van Leer Riemann solver // J. Shock Waves. 1994. V. 4. P. 25–34.
  23. Jameson А. Time-Dependent Calculations Using Multrigrid, with Application to Unsteady Flows past Airfoils and Wings // AIAA paper 91–1596, 1991.
  24. Yoon S., Jameson A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations // AIAA J. 1988. V. 26(9). P. 1025–1026.
  25. Men’shov I.S., Nakamura Y. On implicit Godunov’s method with exactly linearized numerical flux // Computers and Fluids. 2000. V. 29(6). P. 595–616.
  26. Najafi-Yazdi A., Bres G.A., Mongeau L. An Acoustic Analogy Formulation for Moving Sources in Uniformly Moving Media // Proc. Royal Soc. A. 2011. V. 467. P. 144–165.
  27. Зайцев М.Ю., Копьев В.Ф., Величко С.А., Беляев И.В. Локализация и ранжирование источников шума самолета в летных испытаниях и сравнение с акустическими измерениями крупномасштабной модели крыла // Акуст. журн. 2023. Т. 69. № 2. С. 165–176.
  28. Демьянов М.А. Корреляционный метод идентификации акустических источников с помощью многомикрофонных измерений // Акуст. журн. 2022. Т. 68. № 6. С. 638–646.
  29. Копьев В.Ф., Ершов В.В., Храмцов И.В., Кустов О.Ю. Повышение точности локализации дипольных источников звука с помощью плоских микрофонных антенн // Акуст. журн. 2023. Т. 69. № 2. С. 191–206.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Illustration of the geometry of the source location near an infinite half-plane and the location of the observation plane

Жүктеу (52KB)
3. Fig. 2. Distribution of sound pressure level modes at the observation plane at frequency f = 400 Hz: (a) - field of an isolated screw with no screen at ys = 175 mm; (b) - field taking into account geometrical screening at ys = 175 mm; (c) - total field from a screw with a screen at ys = 175 mm; (d) - total field from a screw with a screen at ys = 200 mm; (e) - diffracted field at ys = 175 mm

Жүктеу (487KB)
4. Fig. 3. Distribution of amplitude and phase of the diffracted sound field from the coordinate zv on the line xv = 0 and yv = -5 mm at ys = 175 mm at frequency f = 400 Hz

Жүктеу (88KB)
5. Fig. 4. (a) - Distribution of local blade setting angle β along the radius; (b) - Distribution of relative chord (1) and relative thickness (2) of the profile along the radius

Жүктеу (63KB)
6. Fig. 5. Schematic of single propeller tests in the plugged chamber AK-2

Жүктеу (626KB)
7. Fig. 6. Schematic of screw and plate arrangement in the calculation

Жүктеу (55KB)
8. Fig. 7. (a) - Scheme of the design area; (b) - cross-section of the design area by the vertical plane of symmetry

Жүктеу (597KB)
9. Fig. 8. Top - surface mesh on the blade, bottom - cross-section of the blade and washer with a plane at radius r / R = 0.8

Жүктеу (136KB)
10. Fig. 9. FWH control surfaces for noise calculation: (a) - isolated screw; (b) - screw with plate

Жүктеу (96KB)
11. Fig. 10. Dependence of propeller thrust coefficient on relative pitch, line - numerical modelling data; markers - experiment in AK-2

Жүктеу (50KB)
12. Fig. 11. Propeller noise characteristics for θ = 95°: (a) - time sweep of pressure during two propeller revolutions; (b) - noise spectra. 1 - experiment, 2 - calculation

Жүктеу (152KB)
13. Fig. 12. Directionality of tonal components of propeller noise: 1 - for frequency f = fBPF 400 Hz; 2 - for frequency f = 2 fBPF; 3 - for frequency f = 3 fBPF. Symbols - experiment, lines - calculation

Жүктеу (74KB)
14. Fig. 13. Schematic of the noise output area for comparing the isolated screw and plate screw cases

Жүктеу (111KB)
15. Fig. 14. Level distributions (in dB) of the fundamental harmonic of the tone noise of an isolated screw obtained using different control surfaces: (a) - FHW1; (b) - FWH2; (c) - FWH3; (d) - FWH4

Жүктеу (339KB)
16. Fig. 15. (a) - Comparison of instantaneous fields of longitudinal velocity and (b) - curl modulus for a single propeller and a propeller with a plate at ∆y = ∆x and ∆y = 2∆x (from top to bottom)

Жүктеу (169KB)
17. Fig. 16. Instantaneous fields div V: (a) - isolated screw; (b) - screw with plate ∆y = ∆x, solid arrows show directions of noise amplification, dotted arrows - noise attenuation compared to isolated screw

Жүктеу (214KB)
18. Fig. 17. Level distributions of the fundamental harmonic of the tonal noise (a) - isolated screw and screw with plate (∆y = ∆x): (b) - FWH1; (c) - FWH2; (d) - FWH1 and FWH2; (e) - FHW3; (f) - FWH4; (g) - FWH5; (h) - FWH6

Жүктеу (505KB)
19. Fig. 18. (a) - Radiation contribution from the plate leading edge zone; (b) - total sound field from the screw and from the plate leading edge zone (∆y = ∆x)

Жүктеу (175KB)
20. Fig. 19. (a) - Total field from the screw and from the plate; (b) - Total field from the screw and from the plate leading edge area (∆y = 2∆x)

Жүктеу (174KB)

© The Russian Academy of Sciences, 2024