Interaction of Corticotropin-Releasing Factor and Capsaicin-Sensitive Afferent Neurons in Gastroprotection
- Authors: Yarushkina N.I.1, Podvigina T.Т.1, Morozova O.Y.1, Filaretova L.P.1
-
Affiliations:
- Pavlov Institute of Physiology RAS, Laboratory of Experimental Endocrinology
- Issue: Vol 54, No 4 (2023)
- Pages: 57-72
- Section: Articles
- URL: https://ter-arkhiv.ru/0301-1798/article/view/676341
- DOI: https://doi.org/10.31857/S0301179823040082
- EDN: https://elibrary.ru/ECGBJH
- ID: 676341
Cite item
Abstract
Abstract
—Corticotropin-releasing factor (CRF) and capsaicin-sensitive afferent neurons with efferent-like function (CSN) make an important contribution to the regulation of the functions of the gastrointestinal tract (GIT) and gastroprotection. The aim of the review was to analyze the data of literature, including the results of our own studies on the interaction of CRF and CSN in the gastroprotection and regulation of the functions of the gastrointestinal tract, with a focus on their most studied interaction in the regulation of the motor function of the gastrointestinal tract. Based on the results obtained by the authors of the review, the contribution of CSN to the implementation of the gastroprotective effect of CRF and, conversely, the participation of CRF in the gastroprotective effect of capsacin, which activates CSN, is discussed. The contribution of glucocorticoid hormones to the implementation of the gastroprotective action of CRF and the compensatory gastroprotective role of these hormones under conditions of shutdown of CSN functioning are considered.
About the authors
N. I. Yarushkina
Pavlov Institute of Physiology RAS, Laboratory of Experimental Endocrinology
Author for correspondence.
Email: yarushkinani@infran.ru
Russia, 199034, Saint Petersburg
T. Т. Podvigina
Pavlov Institute of Physiology RAS, Laboratory of Experimental Endocrinology
Author for correspondence.
Email: podviginatt@infran.ru
Russia, 199034, Saint Petersburg
O. Yu. Morozova
Pavlov Institute of Physiology RAS, Laboratory of Experimental Endocrinology
Author for correspondence.
Email: morozovaoyu@infran.ru
Russia, 199034, Saint Petersburg
L. P. Filaretova
Pavlov Institute of Physiology RAS, Laboratory of Experimental Endocrinology
Author for correspondence.
Email: filaretovalp@infran.ru
Russia, 199034, Saint Petersburg
References
- Багаева Т.Р., Бобрышев П.Ю., Комкова О.П., Филаретова Л.П. Роль глюкокортикоидных гормонов и капсаицин-чувствительных нейронов в гастропротективном эффекте ишемического прекондиционирования // Рос. физиол. журн. им. И.М. Сеченова. 2012. Т. 98. № 10. С. 1242–1249.
- Бобрышев П.Ю., Подвигина Т.Т., Багаева Т.Р., Филаретова Л.П. Компенсаторное гастропротективное действие глюкокортикоидных гормонов в условиях выключения функции капсаицин-чувствительных нейронов у крыс // Рос. физиол. журн. им. И.М. Сеченова. 2006. Т. 92. № 8. С. 1006–1015.
- Золотарев В.А., Хропычева Р.П. Взаимодействие синтаз оксида азота с циклооксигеназами при регуляции физиологических и патофизиологических процессов и его роль в механизмах адаптивной гастропротекции // Успехи физиологических наук. 2021. Т. 52. № 4. С. 3–17. https://doi.org/10.31857/S0301179821040093
- Мязина М.А., Багаева Т.Р., Филаретова Л.П. Влияние метирапона на гастропротективное действие кортикотропин-рилизинг фактора при его центральном введении в условиях ульцерогенного влияния индометацина // Рос. физиол. журн. им. И.М. Сеченова. 2014. Т. 100. № 12. С. 1421–1430.
- Подвигина Т.Т., Бобрышев П.Ю., Багаева Т.Р., Мальцев Н.А., Левкович Ю.И., Филаретова Л.П. Влияние десенситизации капсаицин-чувствительных афферентных нейронов на микроциркуляцию в желудке у крыс зависит от содержания глюкокортикоидных гормонов в крови // Рос. физиол. журн. им. И.М. Сеченова. 2008. Т. 94. № 6. С. 700–709.
- Подвигина Т.Т., Морозова О.Ю., Солнушкин С.Д., Чихман В.Н., Филаретова Л.П. Влияние сенсититизации и десенситизации капсаицин-чувствительных нейронов на образование эрозий в слизистой оболочке желудка, индуцированных индометацином, у крыс: роль глюкокортикоидных гормонов // Рос. физиол. журн. им. И.М. Сеченова. 2019. Т. 105. № 2. С. 225–237. https://doi.org/10.1134/S0869813919020080
- Филаретова Л.П., Багаева Т.Р., Морозова О.Ю. Гастропротективное действие кортикотропин-рилиинг фактора (КРФ): вовлечение глюкококортикоидных гормонов и КРФ рецепторов 2-го типа // Рос. физиол. журн. им. И.М. Сеченова. 2012. Т. 98. № 12. С. 1555–1566.
- Филаретова Л.П., Подвигина Т.Т., Багаева Т.Р., Бобрышев П.Ю. Компенсаторная гастропротективная роль глюкокортикоидных гормонов // Рос. физиол. журн. им. И.М. Сеченова. 2007. Т. 93. № 11. С. 1217–1228.
- Филаретова Л.П., Ярушкина Н.И. Капсаицин-чувствительные нейроны: роль в гастропротекции и регуляции болевой чувствительности Капсаицин-чувствительные нейроны: роль в гастропротекции и регуляции болевой чувствительности // Успехи физиологических наук. 2019. Т. 50. № 1. С. 3–16. https://doi.org/10.1134/S0301179819010053
- Abdel Salam O.M., Szolcsányi J., Mózsik G. The indomethacin-induced gastric mucosal damage in rats. Effect of gastric acid, acid inhibition, capsaicin-type agents and prostacyclin // J. Physiol. Paris. 1997. V. 91. P. 7–19. https://doi.org/10.1016/s0928-4257(99)80161-2
- Akiba Y., Kaunitz J.D., Million M. Peripheral corticotropin-releasing factor receptor type 2 activation increases colonic blood flow through nitric oxide pathway in rats // Digestive diseases and sciences. 2015. V. 60. № 4. P. 858–867. https://doi.org/10.1007/s10620-015-3579-y
- Bakke H.K., Bogsnes A., Murison R. Studies on the interaction between ICV effects of CRF and CNS noradrenaline depletion // Physiology & Behavior. 1990. V. 47. № 6. P. 1253–1260. https://doi.org/10.1016/0031-9384(90)90379-i
- Bale T.L., Vale W.W. CRF and CRF receptors: role in stress responsivity and other behaviors // Annual Review of Pharmacology and Toxicology. 2004. V. 44. P. 525–557. https://doi.org/10.1146/annurev.pharmtox.44.101802.121410
- Balemans D., Boeckxstaens G.E., Talavera K., Wouters M.M. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity // American J. Physiology – Gastrointestinal and Liver Physiology. 2017. V. 312. № 6. P. G635–G648. https://doi.org/10.1152/ajpgi.00401.2016
- Barquist E., Zinner M., Rivier J., Taché Y. Abdominal surgery-induced delayed gastric emptying in rats: role of CRF and sensory neurons // The American Journal of Physiology. 1992. V. 262. № 4 Pt 1. P. G616-20. https://doi.org/10.1152/ajpgi.1992.262.4.G616
- Barthó L., Benkó R., Patacchini R. et al. Effects of capsaicin on visceral smooth muscle: a valuable tool for sensory neurotransmitter identification // European J. Pharmacology. 2004. V. 500. № 1–3. P. 143–157. https://doi.org/10.1016/j.ejphar.2004.07.020
- Baylie R.L., Brayden J.E. TRPV channels and vascular function // Acta Physiologica (Oxford, England). 2011. V. 203. № 1. P. 99–116. /https://doi.org/10.1111/j.1748-1716.2010.02217.x
- Birklein F., Schmelz M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS) // Neuroscience Letters. 2008. V. 437. № 3. P. 199–202. https://doi.org/10.1016/j.neulet.2008.03.081
- Bobryshev P., Podvigina T., Maltcev N., Filaretova L. Gastric microcirculation as target of gastroprotective action of glucocorticoid hormones in rats with desensitization of capsaicin-sensitive sensory neurons // Inflammopharmacology. 2006. V. 14. № 5–6. P. 236–242. https://doi.org/10.1007/s10787-006-1546-0
- Bobryshev P., Bagaeva T., Filaretova L. Gastroprotective action of glucocorticoid hormones in rats with desensitization of capsaicin-sensitive sensory neurons // Inflammopharmacology. 2005. V. 13. № 1–3. P. 217–228. https://doi.org/10.1163/156856005774423782
- Bonaz B., Taché Y. Corticotropin-releasing factor and systemic capsaicin-sensitive afferents are involved in abdominal surgery-induced Fos expression in the paraventricular nucleus of the hypothalamus // Brain Research. 1997. V. 748. № 1–2. P. 12–20. https://doi.org/10.1016/s0006-8993(96)01281-4
- Boorse G.C., Denver R.J. Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides // General and Comparative Endocrinology. 2006. V. 146. № 1. P. 9–18. https://doi.org/10.1016/j.ygcen.2005.11.014
- Botz B., Kriszta G., Bölcskei K. et al. Capsaicin-Sensitive Peptidergic Sensory Nerves Are Anti-Inflammatory Gatekeepers in the Hyperacute Phase of a Mouse Rheumatoid Arthritis Model // International J. Molecular Sciences. 2021. V. 22. № 4. P. 1682. https://doi.org/10.3390/ijms22041682
- Chatoo M., Li Y., Ma Z. et al. Involvement of Corticotropin-Releasing Factor and Receptors in Immune Cells in Irritable Bowel Syndrome // Frontiers in Endocrinology. 2018. V. 9. P. 21. https://doi.org/10.3389/fendo.2018.00021
- Chen R.Y.Z., Guth P.H. Interaction of endogenous nitric oxide and CGRP in sensory neuron-induced gastric vasodilation // American J. Physiology. 1995. V. 268. № 5 Pt 1. P. G791-6.https://doi.org/10.1152/ajpgi.1995.268.5.G791
- Chen R.Y.Z., Li D.S., Guth P.H. Role of calcitonin gene-related peptide in capsaicin-induced gastric submucosal arteriolar dilation // American J. Physiology. 1992. V. 262. № 5 Pt 2. P. H1350-5.https://doi.org/10.1152/ajpheart.1992.262.5.H1350
- Coşkun T., Bozkurt A., Alican I. et al. Pathways mediating CRF-induced inhibition of gastric emptying in rats // Regulatory Peptides. 1997. V. 69. № 3. P. 113–120. https://doi.org/10.1016/s0167-0115(96)02066-6
- Csekő K., Beckers B., Keszthelyi D., Helyes Z. Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: Potential therapeutic targets? // Pharmaceuticals. 2019. V. 12. № 2. P. 48. https://doi.org/10.3390/ph12020048
- Czimmer J., Tache Y. Peripheral Corticotropin Releasing Factor Signaling Inhibits Gastric Emptying: Mechanisms of Action and Role in Stress-related Gastric Alterations of Motor Function // Current Pharmaceutical Design. 2017. V. 23. № 27. P. 4042–4047. https://doi.org/10.2174/1381612823666170228142428
- Debreceni A., Abdel-Salam O.M., Figler M., Juricskay I., Szolcsányi J., Mózsik G. Capsaicin increases gastric emptying rate in healthy human subjects measured by 13C-labeled octanoic acid breath test // J. Physiology. Paris. 1999. V. 93. № 5. P. 455–460. https://doi.org/10.1016/s0928-4257(99)00114-x
- Dedic N., Chen A., Deussing J.M. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response // Current Molecular Pharmacology. 2018. V. 11. № 1. P. 4–31. https://doi.org/10.2174/1874467210666170302104053
- Dufau M.L., Tinajero J.C., Fabbri A. Corticotropin-releasing factor: an antireproductive hormone of the testis // FASEB journal. 1993. V. 7. № 2. P. 299–307. https://doi.org/10.1096/fasebj.7.2.8382638
- Esposito P., Chandler N., Kandere K. et al. Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress // The J. Pharmacology and Experimental Therapeutics. 2002. V. 303. № 3. P. 1061–1066. https://doi.org/10.1124/jpet.102.038497
- Filaretova L. Tanaka A., Miyazawa T., Kato S., Takeuchi K. Mechanisms by which endogenous glucocorticoid protects against indomethacin-induced gastric injury in rats // American J. Physiology – Gastrointestinal and Liver Physiology. 2002. V. 283. № 5. P. G1082–1089. https://doi.org/10.1152/ajpgi.00189.2002
- Filaretova L., Bobryshev P., Bagaeva T., Podvigina T., Takeuchi K. Compensatory gastroprotective role of glucocorticoid hormones during inhibition of prostaglandin and nitric oxide production and desensitization of capsaicin-sensitive sensory neurons // Inflammopharmacology. 2007. V. 15. № 4. P. 146–53. https://doi.org/10.1007/s10787-007-1589-x
- Filaretova L. Gastroprotective Effect of Stress Preconditioning: Involvement of Glucocorticoids. // Current Pharmaceutical Design. 2017. V. 23. № 27. P. 3923–3927. https://doi.org/10.2174/1381612823666170215145125
- Filaretova L., Bagaeva T. The realization of the brain-gut interactions with corticotropin-releasing factor and glucocorticoids. // Current Neuropharmacology. 2016. V. 14. № 8. P. 876–881. https://doi.org/10.2174/1570159x14666160614094234
- Filaretova L., Bagaeva T., Morozova O. Stress and the stomach: Corticotropin-releasing factor may protect the gastric mucosa in stress through involvement of glucocorticoids // Cellular and Molecular Neurobiology. 2012. V. 32. № 5. P. 829–836. https://doi.org/10.1007/s10571-012-9800-z
- Filaretova L.P. Podvigina T.T, Bobryshev P.Y., Bagaeva T.R., Tanaka A., Takeuchi K. Hypothalamic-pituitary-adrenocortical axis: The hidden gold in gastric mucosal homeostasis // Inflammopharmacology. 2006. V. 14. № 5–6. P. 207–213. https://doi.org/10.1007/s10787-006-1544-2
- Filaretova L.P., Morozova O.Y., Yarushkina N.I. Peripheral corticotropin-releasing hormone may protect the gastric musosa against indometacin-induced injury through involvement of glucocorticoids // J. Physiology and Pharmacology. 2021. V. 72. № 5. P. 1–10. https://doi.org/10.26402/jpp.2021.5.06
- Filaretova L., Morozova O., Myazina M., Bagaeva T. Cortricotropin-releasing factor (CRF) may protect the gastric mucosa against injury through involvement CRF1 and CRF2 receptor types // FASEB J. 2013. V. 27. № 1. P. 1093.11. https://doi.org/10.1096/fasebj.27.1_supplement.1093.11
- Filaretova L.P., Morozova O.Yu. From hypothalamic regulation of pituitary-adrenocortical axis to participation of glucocorticoids in gastroprotective action of corticotropin-releasing factor // J. Evolutionary Biochemistry and Physiology. 2022. V. 58. № 6. P. 1994–2006.
- Filaretova L.P. The Contribution of corticotropin-releasing factor to gastroprotection // Neurochem. J. 2018. V. 12. № 2. P. 127–129. https://doi.org/10.1134/S1819712418020046
- Filaretova L.P., Bagaeva T.R., Morozova O.Yu., Myazina M.A. Corticotropin-releasing factor may protect the gastric mucosa in stress through involvement of glucocorti-coids. Chapter in: Filaretova L.P., Takeuchi K. (eds): Cell/Tissue Injury and Cytoprotec-tion/Organoprotection in the Gastrointestinal Tract: Mechanisms, Prevention and Treatment // Front. Gastrointest. Res. Basel, Karger, 2012. V. 30. P. 124–133. https://doi.org/10.1159/000338424
- Fischer M.J.M., Ciotu C.I., Szallasi A. The Mysteries of Capsaicin-Sensitive Afferents // Frontiers in Physiology. 2020. V. 11. P. 554195. https://doi.org/10.3389/fphys.2020.554195
- Fukudo S., Nomura T., Hongo M. Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome // Gut. 1998. V. 42. № 6 . P. 845–849. https://doi.org/10.1136/gut.42.6.845
- Gonzalez R., Dunkel R., Koletzko B., Schusdziarra V., Allescher H.D. Effect of capsaicin-containing red pepper sauce suspension on upper gastrointestinal motility in healthy volunteers // Digestive Diseases and Sciences. 1998. V. 43. № 6. P. 1165–1171. https://doi.org/10.1023/a:1018831018566
- Gourcerol G., Wu S.V., Yuan P.Q. et al. Activation of corticotropin-releasing factor receptor 2 mediates the colonic motor coping response to acute stress in rodents // Gastroenterology. 2011. V. 140. № 5. P. 1586-96.e6. https://doi.org/10.1053/j.gastro.2011.01.039
- Gunion M.W., Kauffman G.L., Tache Y. Intrahypothalamic corticotropin-releasing factor elevates gastric bicarbonate and inhibits stress ulcers in rats // American J. Physiology. 1990. V. 258. № 1 Pt 1. P. G152-7. https://doi.org/10.1152/ajpgi.1990.258.1.G152
- Hagiwara S., Kaushal E., Paruthiyil S. et al. Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia // PloS One. 2018. V. 13. № 9. P. e0203704. https://doi.org/10.1371/journal.pone.0203704
- Hauger R.L., Risbrough V., Brauns O., Dautzenberg F.M. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. // CNS & Neurological Disorders Drug Targets. 2006. V. 5. № 4. P. 453–79. https://doi.org/10.2174/187152706777950684
- Henckens M.J.A.G., Deussing J.M., Chen A. Region-specific roles of the corticotropin-releasing factor–urocortin system in stress // Nature Publishing Group. 2016. V. 17. № 10. P. 636–51. https://doi.org/10.1038/nrn.2016.94
- Heymann-Mönnikes I., Taché Y., Trauner M., Weiner H., Garrick T. CRF microinjected into the dorsal vagal complex inhibits TRH analog- and kainic acid-stimulated gastric contractility in rats // Brain Research. 1991. V. 554. № 1–2. P. 39–144. https://doi.org/10.1016/0006-8993(91)90181-t
- Holzer P., Pabst M.A, Lippe I.T. et al. Afferent nerve-mediated protection against deep mucosal damage in the rat stomach // Gastroenterology. 1990. V. 98. № 4. P. 838–848. https://doi.org/10.1016/0016-5085(90)90005-l
- Holzer P. Neural injury, repair, and adaptation in the GI tract. II. The elusive action of capsaicin on the vagus nerve // American J. Physiology. 1998. V. 275. № 1. P. G8-13. https://doi.org/10.1152/ajpgi.1998.275.1.G8
- Holzer P., Livingston E. H., Guth P.H. Sensory neurons signal for an increase in rat gastric mucosal blood flow in the face of pending acid injury // Gastroenterology. 1991. V. 101. № 2. P. 416–423. https://doi.org/10.1016/0016-5085(91)90020-l
- Holzer P., Maggi C. A. Dissociation of dorsal root ganglion neurons into afferent and efferent- like neurons // Neuroscience. 1998. V. 86. № 2. P. 389–398. https://doi.org/10.1016/s0306-4522(98)00047-5
- Holzer P., Pabst M.A., Lippe I.T. Intragastric capsaicin protects against aspirin-induced lesion formation and bleeding in the rat gastric mucosa // Gastroenterology. 1989. V. 96. № 6. P. 1425–1433. https://doi.org/10.1016/0016-5085(89)90508-8
- Holzer P., Sametz W. Gastric mucosal protection against ulcerogenic factors in the rat mediated by capsaicin-sensitive afferent neurons // Gastroenterology. 1986. V. 91. № 4. P. 975–981. https://doi.org/10.1016/0016-5085(86)90702-x
- Hori A., Hotta N., Fukazawa A. et al. Insulin potentiates the response to capsaicin in dorsal root ganglion neurons in vitro and muscle afferents ex vivo in normal healthy rodents // J. Physiology. 2022. V. 600. № 3. P. 531–545. https://doi.org/10.1113/JP282740
- Hussain Z., Park H. Inflammation and impaired gut physiology in post-operative ileus: mechanisms and the treatment options // J. Neurogastroenterology and Motility. 2022. V. 28. № 4. P. 517–530. https://doi.org/10.5056/jnm22100
- Ilie M., Caruntu C., Tampa M., et al. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions (Review) // Experimental and Therapeutic Medicine. 2019. V. 18. № 2. P. 916-925. https://doi.org/10.3892/etm.2019.7513
- Izbéki F., Wittmann T., Jancsó G., Csáti S., Lonovics J. Inhibition of astric emptying and small intestinal transit by ethanol is mediated by capsaicin-sensitive afferent nerves // Naunyn-Schmiedeberg’s Archives of Pharmacology. 2002. V. 365. № 1. P. 17–21. https://doi.org/10.1007/s00210-001-0491-0
- Jamieson B.B., Kim J.S., Iremonger K.J. Cannabinoid and vanilloid pathways mediate opposing forms of synaptic plasticity in corticotropin-releasing hormone neurons // J. Neuroendocrinology. 2022. V. 34. № 4. P. e13084. https://doi.org/10.1111/jne.13084
- Kang J.Y., Alexander B., Math M.V., Williamson R.C. The effect of chilli and its pungent ingredient capsaicin on gastrointestinal transit in the rat // J. Gastroenterology and Hepatology. 1993. V. 8. № 6. P. 513–516. https://doi.org/10.1111/j.1440-1746.1993.tb01644.x
- Kiank C., Taché Y., Larauche M. Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin-releasing factor receptors // Brain, Behavior, and Immunity. 2010. V. 24. № 1. P. 41–48. https://doi.org/10.1016/j.bbi.2009.08.006
- Kishimoto T., Pearse R.V. 2nd., Lin C.R., Rosenfeld M.G. A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle // Proceedings of the National Academy of Sciences of the United States of America. 1995. V. 92. № 4. P. 1108–1112.https://doi.org/10.1073/pnas.92.4.1108
- Korosi A., Kozicz T., Richter J. et al. Corticotropin-releasing factor, urocortin 1, and their receptors in the mouse spinal cord // The J. Comparative Neurology. 2007. V. 502. № 6. P. 973–989. https://doi.org/10.1002/cne.21347
- Kozakai Y., Hori K., Aye-Mon A. et al. The role of peripheral corticotropin-releasing factor signaling in a rat model of stress-induced gastric hyperalgesia // Biochemical and Biophysical Research Communications. 2019. V. 519. № 4. P. 797–802. https://doi.org/10.1016/j.bbrc.2019.09.040
- Kruseman A.C.N., Linton E.A., Lowry P.J., Rees L.H., Besser G.M. Corticotropin-releasing factor immunoreactivity in human gastrointestinal tract // Lancet. 1982. V. 2. № 8310. P. 1245–1246. https://doi.org/10.1016/s0140-6736(82)90105-2
- Kubo Y., Kumano A., Kamei K. et al. Urocortin prevents indomethacin-induced small intestinal lesions in rats through activation of CRF2 receptors. // Digestive Diseases and Sciences. 2010. V. 55. № 6. P. 1570–80. https://doi.org/10.1007/s10620-009-0930-1
- Kumar V., Kumar V., Devi K. et al. Intrarectal Capsazepine Administration Modulates Colonic Mucosal Health in Mice // International J. Molecular Sciences. 2022. V. 23. № 17. P. 9577. https://doi.org/10.3390/ijms23179577
- Larauche M, Gourcerol G., Wang L. et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways // American J. Physiology–Gastrointestinal and Liver Physiology. 2009. V. 297. № 1. P. G215–G227. https://doi.org/10.1152/ajpgi.00072.2009
- Larauche M., Moussaoui N., Biraud M., et al. Brain corticotropin-releasing factor signaling: Involvement in acute stress-induced visceral analgesia in male rats // Neurogastroenterology and Motility. 2019. V. 31. № 2. P. e13489. https://doi.org/10.1111/nmo.13489
- Lázár Z., Benkó R., Bölcskei K. et al. Actions of endothelin and corticotropin releasing factor in the guinea-pig ileum: no evidence for an interaction with capsaicin-sensitive neurons // Neuropeptides. 2003. V. 37. № 4. P. 220–232. https://doi.org/10.1016/s0143-4179(03)00048-9
- Lenz H.J., Raedler A., Greten H., Vale W.W., Rivier J.E. Stress-induced gastrointestinal secretory and motor responses in rats are mediated by endogenous corticotropin-releasing factor // Gastroenterology. 1988. V. 95. № 6. P. 1510–1517. https://doi.org/10.1016/s0016-5085(88)80070-2
- Lenz H.J., Hester S.E., Brown M.R. Corticotropin-releasing factor. Mechanisms to inhibit gastric acid secretion in conscious dogs // J. Clinical Investigation. 1985. V. 75. № 3. P. 889–895. https://doi.org/10.1172/JCI111788
- Lewis M.W., Hermann G.E., Rogers R.C., Travagli R.A. In vitro and in vivo analysis of the effects of corticotropin releasing factor on rat dorsal vagal complex // J. Physiology. 2002. V. 543. № Pt 1. P. 135–146. https://doi.org/10.1113/jphysiol.2002.019281
- Liu T., Wan Y., Meng Y. et al. Capsaicin: A Novel Approach to the Treatment of Functional Dyspepsia // Molecular Nutrition & Food Research. 2023. V. 67. № 9. P. 2200793. https://doi.org/10.1002/mnfr.202200793
- Liu S., Chang J., Long N. et al. Endogenous CRF in rat large intestine mediates motor and secretory responses to stress // Neurogastroenterology and Motility. 2016. V. 28. № 2. P. 281–291. https://doi.org/10.1111/nmo.12725
- Lippe I.T., Pabst M.A., Holzer P. Intragastric capsaicin enhances rat gastric acid elimination and mucosal blood flow by afferent nerve stimulation // British Journal of Pharmacology. 1989. V. 96. № 1. P. 91–100.https://doi.org/10.1111/j.1476-5381.1989.tb11788.x
- Lv Y., Wen J., Fang Y., Zhang H., Zhang J. Corticotropin-releasing factor receptor 1 (CRF-R1) antagonists: Promising agents to prevent visceral hypersensitivity in irritable bowel syndrome // Peptides. 2022. V. 147. P. 170705. https://doi.org/10.1016/j.peptides.2021.170705
- Lytinas M., Kempuraj D., Huang M., et al. Acute stress results in skin corticotropin-releasing hormone secretion, mast cell activation and vascular permeability, an effect mimicked by intradermal corticotropin-releasing hormone and inhibited by histamine-1 receptor antagonists // International Archives of Allergy and Immunology. 2003. V. 130. № 3. P. 224–231. https://doi.org/10.1159/000069516
- Martínez V., Rivier J., Wang L., Taché Y. Central injection of a new corticotropin-releasing factor (CRF) antagonist, astressin, blocks CRF- and stress-related alterations of gastric and colonic motor function // The J. Pharmacology and Experimental Therapeutics. 1997. V. 280. № 2. P. 754–760.
- Martínez V. Wang L., Rivier J.E., Vale W., Taché Y. Differential actions of peripheral corticotropin-releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: role of CRF receptor subtypes 1 and 2 // J. Pharmacology and Experimental Therapeutics. 2002. V. 301. № 2. P. 611–617. https://doi.org/10.1124/jpet.301.2.611
- Martínez V., Wang L., Rivier J., Grigoriadis D., Taché Y. Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. // J. Physiology. 2004. V. 556. № Pt 1. P. 221–34. https://doi.org/10.1113/jphysiol.2003.059659
- Matsumoto J., Takeuchi K., Ueshima K., Okabe S. Role of capsaicin-sensitive afferent neurons in mucosal blood flow response of rat stomach induced by mild irritants // Digestive Diseases and Sciences. 1992. V. 37. № 9. P. 1336–1344. https://doi.org/10.1007/BF01296001
- Matsumoto J., Takeuchi K., Okabe S. Characterization of gastric mucosal blood flow response induced by intragastric capsaicin in rats // Japanese J. Pharmacology. 1991. № 2(57). C. 205–213.https://doi.org/10.1254/jjp.57.205
- Matsumoto K., Kurosawa E., Terui H., et al. Localization of TRPV1 and contractile effect of capsaicin in mouse large intestine: high abundance and sensitivity in rectum and distal colon // American J. Physiology. Gastrointestinal and Liver Physiology. 2009. V. 297. № 2. P. G348-60. https://doi.org/10.1152/ajpgi.90578.2008
- Merchant N.B., Goodman J., Dempsey D.T., Milner R.E., Ritchie W.P.Jr. The role of calcitonin gene-related peptide and nitric oxide in gastric mucosal hyperemia and protection // J. Surgical Research. 1995. V. 58. № 3. P. 344–350. https://doi.org/10.1006/jsre.1995.1053
- Million M., Maillot C., Saunders P. et al. Human urocortin II, a new CRF-related peptide, displays selective CRF(2)-mediated action on gastric transit in rats // American J. Physiology. Gastrointestinal and Liver Physiology. 2002. V. 282. № 1. P. G34-40. https://doi.org/10.1152/ajpgi.00283.2001
- Monnikes H., Schmidt B.G., Raybould H.E., Taché Y. CRF in the paraventricular nucleus mediates gastric and colonic motor response to restraint stress // American J. Physiology. 1992. V. 262. № 1. Pt 1. P. G137-43. https://doi.org/10.1152/ajpgi.1992.262.1.G137
- Mousa S.A., Bopaiah C.P., Richter J.F., Yamdeu R.S., Schäfer M. Inhibition of inflammatory pain by CRF at peripheral, spinal and supraspinal sites: Involvement of areas coexpressing CRF receptors and opioid peptides // Neuropsychopharmacology. 2007. V. 32. № 12. P. 2530–2542. https://doi.org/10.1038/sj.npp.1301393
- Mousa S.A., Khalefa B.I., Shaqura M. et al. Superior control of inflammatory pain by corticotropin-releasing factor receptor 1 via opioid peptides in distinct pain-relevant brain areas // J. Neuroinflammation. 2022. V. 19. № 1. P. 148. https://doi.org/10.1186/s12974-022-02498-8
- Mózsik G. Capsaicin as new orally applicable gastroprotective and therapeutic drug alone or in combination with nonsteroidal anti-inflammatory drugs in healthy human subjects and in patients // Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques. 2014. V. 68. P. 209–258. https://doi.org/10.1007/978-3-0348-0828-6_9
- Mózsik G., Szolcsányi J., Dömötör A. Capsaicin research as a new tool to approach of the human gastrointestinal physiology, pathology and pharmacology // Inflammopharmacology. 2007. V. 15. № 6. P. 232–245. https://doi.org/10.1007/s10787-007-1584-2
- Mózsik G., Szolcsányi J., Rácz I. Gastroprotection induced by capsaicin in healthy human subjects // World J. Gastroenterology. 2005. V. 11. № 33. P. 5180–5184. https://doi.org/10.3748/wjg.v11.i33.5180
- Nakade Y., Fukuda H., Iwa M. et al. Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT3 receptors in conscious rats // American J. Physiology. Gastrointestinal and liver physiology. 2007. V. 292. № 4. P. G1037-44. https://doi.org/10.1152/ajpgi.00419.2006
- Nozu T., Martinez V., Rivier J., Taché Y. Peripheral urocortin delays gastric emptying: role of CRF receptor 2 // American J. physiology. 1999. V. 276. № 4. P. G867-74. https://doi.org/10.1152/ajpgi.1999.276.4.G867
- Nozu T., Okumura T. Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome // J. Gastroenterology. 2015. V. 50. № 8. P. 819–30. https://doi.org/10.1007/s00535-015-1086-8
- Okumi H., Tashima K., Matsumoto K. et al. Dietary agonists of TRPV1 inhibit gastric acid secretion in mice // Planta Medica. 2012. V. 78. № 17. P. 1801–1806. https://doi.org/10.1055/s-0032-1315387
- Pett K., Van Viau V., Bittencourt J.C. et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse // J. Comparative Neurology. 2000. V. 428. № 2. P. 191–212. https://doi.org/10.1002/1096-9861(20001211)428 :2<191::aid-cne1>3.0.co;2-u
- Qin C., Wang Y., Li S., Tang Y., Gao Y. The Involvement of Endothelin Pathway in Chronic Psychological Stress-Induced Bladder Hyperalgesia Through Capsaicin-Sensitive C-Fiber Afferents // J. Inflammation Research. 2022. V. 15. P. 1209–1226. https://doi.org/10.2147/JIR.S346855
- Quintana E., García-Zaragozá E., Martínez-Cuesta M.A. et al. A cerebral nitrergic pathway modulates endotoxin-induced changes in gastric motility // British J. Pharmacology. 2001. V. 134. № 2. P. 325–332. https://doi.org/10.1038/sj.bjp.0704258
- Ray A., Henke P.G., Gulati K., Sen P. The amygdaloid complex, corticotropin releasing factor and stress-induced gastric ulcerogenesis in rats // Brain Research. 1993. V. 624. № 1–2. P. 286–290. https://doi.org/10.1016/0006-8993(93)90089-6
- Raybould H.E., Hölzer H. Dual capsaicin-sensitive afferent pathways mediate inhibition of gastric emptying in rat induced by intestinal carbohydrate // Neuroscience Letters. 1992. V. 141. № 2. P. 236–238. https://doi.org/10.1016/0304-3940(92)90902-j
- Rieger N.S., Varela J.A., Ng A.J. et al. Insular cortex corticotropin-releasing factor integrates stress signaling with social affective behavior // Neuropsychopharmacology. 2022. V. 47. № 6. P. 1156–1168. https://doi.org/10.1038/s41386-022-01292-7
- Rosca A.E., Iesanu M.I., Zahiu C.D.M. et al. Capsaicin and Gut Microbiota in Health and Disease // Molecules. 2020. V. 25. № 23. P. 5681. https://doi.org/10.3390/molecules25235681
- Satoh H., Akiba Y., Urushidani T. Proton pump inhibitors prevent gastric antral ulcers induced by NSAIDs via activation of capsaicin-sensitive afferent nerves in mice // Digestive Diseases and Sciences. 2020. V. 65. № 9. P. 2580–2594. https://doi.org/10.1007/s10620-020-06157-x
- Satyanarayana M.N. Capsaicin and gastric ulcers // Critical Reviews in Food Science and Nutrition. 2006. V. 46. № 4. P. 275–328. https://doi.org/10.1080/1040-830491379236
- De Schepper H.U., De Man J.G., Ruyssers N.E. et al. TRPV1 receptor signaling mediates afferent nerve sensitization during colitis-induced motility disorders in rats // American J. Physiology. Gastrointestinal and Liver Physiology. 2008. V. 294. № 1. P. G245-53. https://doi.org/10.1152/ajpgi.00351.2007
- Shi M., Jones A.R., Niedringhaus M.S. et al. Glucose acts in the CNS to regulate gastric motility during hypoglycemia // American J. Physiology. Regulatory, Integrative and Comparative Physiology. 2003. V. 285. № 5. P. R1192-202. https://doi.org/10.1152/ajpregu.00179.2003
- Shibasaki T., Yamauchi N., Hotta M. et al. Brain corticotropin-releasing factor acts as inhibitor of stress-induced gastric erosion in rats // Life Sciences. 1990. V. 47. № 11. P. 925–932. https://doi.org/10.1016/0024-3205(90)90539-4
- Silverman H.A., Chen A., Kravatz N.L., Chavan S.S., Chang E.H. Involvement of neural transient receptor potential channels in peripheral inflammation // Frontiers in Immunology. 2020. V. 11. P. 590261. https://doi.org/10.3389/fimmu.2020.590261
- Skofitsch G., Insel T.R., Jacobowitz D.M. Binding sites for corticotropin releasing factor in sensory areas of the rat hindbrain and spinal cord // Brain Research Bulletin. 1985. V. 15. № 5. P. 519–522. https://doi.org/10.1016/0361-9230(85)90043-7
- Skofitsch G., Jacobowitz D.M. Corticotropin releasing factor-like immunoreactive neurons in the rat retina // Brain Research Bulletin. 1984. V. 12. № 5. P. 539–542. https://doi.org/10.1016/0361-9230(84)90169-2
- Slominski A.T., Zmijewski M.A., Zbytek B. et al. Key role of CRF in the skin stress response system // Endocrine Reviews. 2013. V. 34. № 6. P. 827–884. https://doi.org/10.1210/er.2012-1092
- Stengel A., Goebel-Stengel M., Wang L., et al. Central administration of pan-somatostatin agonist ODT8-SST prevents abdominal surgery-induced inhibition of circulating ghrelin, food intake and gastric emptying in rats // Neurogastroenterology and Motility. 2011. V. 23. № 7. P. 1–26. https://doi.org/10.1111/j.1365-2982.2011.01721.x
- Stengel A., Taché Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight // Annual Review of Physiology. 2009. V. 71. P. 219–239. https://doi.org/10.1146/annurev.physiol.010908.163221
- Stengel A., Taché Y. Corticotropin-releasing factor signaling and visceral response to stress // Experimental Biology and Medicine. 2010. V. 235. № 10. P. 1168–1178. https://doi.org/10.1258/ebm.2010.009347
- Stengel A., Taché Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress // Frontiers in Neuroscience. 2014. № 8. P. 52. https://doi.org/10.3389/fnins.2014.00052
- Stengel A., Taché Y. Brain peptides and the modulation of postoperative gastric ileus // Current Opinion in Pharmacology. 2014. V. 19. P. 31–37. https://doi.org/10.1016/j.coph.2014.06.006
- Storozhuk M.V., Moroz O.F., Zholos A.V. Multifunctional TRPV1 ion channels in physiology and pathology with focus on the brain, vasculature, and some visceral Systems // BioMed Research International. 2019. V. 2019. P. 5806321. https://doi.org/10.1155/2019/5806321
- Sullivan T.R. Jr., Milner R., Dempsey D.T., Ritchie W.P. Jr. Effect of capsaicin on gastric mucosal injury and blood flow following bile acid exposure // Journal of Surgical Research. 1992. V. 52. № 6. P. 596–600. https://doi.org/10.1016/0022-4804(92)90135-m
- Szabados T., Gömöri K., Pálvölgyi L. et al. Capsaicin-sensitive sensory nerves and the trpv1 ion channel in cardiac physiology and pathologies // International J. Molecular Sciences. 2020. V. 21. № 12. P. 1–23. https://doi.org/10.3390/ijms21124472
- Szallasi A., Blumberg P.M. Vanilloid (Capsaicin) receptors and mechanisms. // Pharmacological Reviews. 1999. V. 51. № 2. P. 159–212.
- Szallasi A. The vanilloid (capsaicin) receptor TRPV1 in blood pressure regulation: a novel therapeutic target in hypertension? // International J. Molecular Sciences. 2023. V. 24. № 10. P. 8769. https://doi.org/10.3390/ijms24108769
- Szolcsányi J. Forty years in capsaicin research for sensory pharmacology and physiology // Neuropeptides. 2004. V. 38. № 6. P. 377–384. https://doi.org/10.1016/j.npep.2004.07.005
- Szolcsányi J., Barthó L. Capsaicin-sensitive afferents and their role in gastroprotection: An update // J. Physiology (Paris). 2001. V. 95. № 1–6. P. 181–188. https://doi.org/10.1016/s0928-4257(01)00023-7
- Tache Y., Larauche M., Yuan P.Q., Million M. Brain and gut CRF signaling: biological actions and role in the gastrointestinal tract // Current Molecular Pharmacology. 2018. V. 11. № 1. P. 51–71. https://doi.org/10.2174/1874467210666170224095741
- Taché Y., Gunion M., Lauffenberger M., Goto Y. Inhibition of gastric acid secretion by intracerebral injection of calcitonin gene related peptide in rats // Life Sciences. 1984. V. 35. № 8. P. 871–878. https://doi.org/10.1016/0024-3205(84)90413-2
- Taché Y., Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function // J. Clinical Investigation. 2007. V. 117. № 1. P. 33–40. https://doi.org/10.1172/JCI30085
- Tache Y., Maeda-Hagiwara M., Turkelson C.M. Central nervous system action of corticotropin-releasing factor to inhibit gastric emptying in rats // American J. Physiology. 1987. V. 253. № 2 Pt 1. P. G241-5. https://doi.org/10.1152/ajpgi.1987.253.2.G241
- Taché Y., Million M. Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia // J. Neurogastroenterology and Motility. 2015. V. 21. № 1. P. 8–24. https://doi.org/10.5056/jnm14162
- Takeuchi K., Tanaka A., Suzuki K., Mizoguchi H. Gastrointestinal sparing anti-inflammatory drugs-effects on ulcerogenic and healing responses // Current Pharmaceutical Design. 2001. V. 7. № 1. P. 49–69. https://doi.org/10.2174/1381612013398464
- Takeuchi K., Ueshima K., Matsumoto J., Okabe S. Role of capsaicin-sensitive sensory nerves in acid-induced bicarbonate secretion in rat stomach // Digestive Diseases and Sciences. 1992. V. 37. № 5. P. 737–743. https://doi.org/10.1007/BF01296432
- Takeuchi K. Pathogenesis of NSAID-induced gastric damage: Importance of cyclooxygenase inhibition and gastric hypermotility // World J. Gastroenterology. 2012. V. 18. № 18. P. 2147–2160. https://doi.org/10.3748/wjg.v18.i18.2147
- Takeuchi K., Abe N., Kumano A. Influence of adrenalectomy on protective effects of urocortin I, a corticotropin-releasing factor, against indomethacin-induced enteropathy in rats. // Current Neuropharmacology. 2016. V. 14. № 8. P. 866–875. https://doi.org/10.2174/1570159x14666160701020807
- Takeuchi K., Satoh H. NSAID-induced small intestinal damage – Roles of various pathogenic factors // Digestion. 2015. V. 91. № 3. P. 218–232. https://doi.org/10.1159/000374106
- Tebbe J.J., Mronga S., Schäfer M.K. et al. Stimulation of neurons in rat ARC inhibits gastric acid secretion via hypothalamic CRF1/2- and NPY-Y1 receptors // American J. Physiology. Gastrointestinal and Liver Physiology. 2003. V. 285. № 6. P. G1075-83. https://doi.org/10.1152/ajpgi.00125.2003
- Vale W., Spiess J., Rivier C., Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin // Science. 1981. V. 213. № 4514. P. 1394–1397. https://doi.org/10.1126/science.6267699
- Vasconcelos M., Stein D.J., Gallas-Lopes M., Landau L., de Almeida R.M.M. Corticotropin-releasing factor receptor signaling and modulation: implications for stress response and resilience // Trends in Psychiatry and Psychotherapy. 2020. V. 42. № 2. P. 195–206. https://doi.org/10.1590/2237-6089-2018-0027
- Wallace J.L. Nonsteroidal anti-inflammatory drugs and gastroenteropathy: The second hundred years // Gastroenterology. 1997. V. 112. № 3. P. 1000–1016. https://doi.org/10.1053/gast.1997.v112.pm9041264
- Wang L., Cardin S., Martínez V., Taché Y. Intracerebroventricular CRF inhibits cold restraint-induced c-fos expression in the dorsal motor nucleus of the vagus and gastric erosions in rats // Brain Research. 1996. V. 736. № 1–2. P. 44–53. https://doi.org/10.1016/0006-8993(96)00726-3
- Ward S.M., Bayguinov J., Won K.J., Grundy D., Berthoud H.R. Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. // J. Comparative Neurology. 2003. V. 465. № 1. P. 121–35. https://doi.org/10.1002/cne.10801
- Wei P., Keller C., Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress // Computational and Structural Biotechnology J. 2020. V. 18. P. 843–851. https://doi.org/10.1016/j.csbj.2020.02.018
- Whittle B.J.R., Lopez-Belmonte J., Moncada S. Regulation of gastric mucosal integrity by endogenous nitric oxide: interactions with prostanoids and sensory neuropeptides in the rat // British J. Pharmacology. 1990. V. 99. № 3. P. 607–611. https://doi.org/10.1111/j.1476-5381.1990.tb12977.x
- Williams C.L., Peterson J.M., Villar R.G., Burks T.F. Corticotropin-releasing factor directly mediates colonic responses to stress // American J. Physiology. 1987. V. 253. № 4 Pt 1. P. G582-6.https://doi.org/10.1152/ajpgi.1987.253.4.G582
- De Winter B.Y., Bredenoord A.J., Van Nassauw L. et al. Involvement of afferent neurons in the pathogenesis of endotoxin-induced ileus in mice: Role of CGRP and TRPV1 receptors // European J. Pharmacology. 2009. V. 615. № 1–3. P. 177–184. https://doi.org/10.1016/j.ejphar.2009.04.055
- Wolter H.J. Corticotropin-releasing factor is contained within perikarya and nerve fibres of rat duodenum // Biochemical and Biophysical Research Communications. 1984. V. 122. № 1. P. 381–387. https://doi.org/10.1016/0006-291x(84)90486-8
- Xiang Y., Xu X., Zhang T. et al. Beneficial effects of dietary capsaicin in gastrointestinal health and disease // Experimental Cell Research. 2022. V. 417. № 2. P. 113227. https://doi.org/10.1016/j.yexcr.2022.113227
- Yang D., Luo Z., Ma S. et al. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension // Cell Metabolism. 2010. V. 12. № 2. P. 130–141. https://doi.org/10.1016/j.cmet.2010.05.015
- Yang L.Z., Tovote P., Rayner M. et al. Corticotropin-releasing factor receptors and urocortins, links between the brain and the heart // European J. Pharmacology. 2010. V. 632. № 1–3. P. 1–6. https://doi.org/10.1016/j.ejphar.2010.01.027
- Yarushkina N.I., Bagaeva T.R., Filaretova L.P. Involvement of corticotropin-releasing factor receptors type 2, located in periaquaductal gray matter, in central and peripheral CRF-induced analgesic effect on somatic pain sensitivity in rats. // J. Physiology and Pharmacology. 2016. V. 67. № 4. P. 595–603.
- Yarushkina N.I., Filaretova L.P. The peripheral corticotropin-releasing factor (CRF)-induced analgesic effect on somatic pain sensitivity in conscious rats: involving CRF, opioid and glucocorticoid receptors // Inflammopharmacology. 2018. V. 26. № 2. P. 305–318. https://doi.org/10.1007/s10787-018-0445-5
- Yuan P.Q., Wu S.V., Stengel A., Sato K., Taché Y. Activation of CRF1 receptors expressed in brainstem autonomic nuclei stimulates colonic enteric neurons and secreto-motor function in male rats // Neurogastroenterology and Motility. 2021. V. 33. № 11. P. e14189. https://doi.org/10.1111/nmo.14189
- Zhang S., Tang L., Xu F. et al. TRPV1 receptor-mediated hypoglycemic mechanism of capsaicin in streptozotocin-induced diabetic rats // Frontiers in Nutrition. 2021. V. 8. P. 750355. https://doi.org/10.3389/fnut.2021.750355
- Zhou S.Y., Lu Y., Song I., Owyang C. Inhibition of gastric motility by hyperglycemia is mediated by nodose ganglia KATP channels // American J. Physiology. Gastrointestinal and Liver Physiology. 2011. V. 300. № 3. P. 394–400. https://doi.org/10.1152/ajpgi.00493.2010
- Zittel T.T., Meile T., Huge A. et al. Preoperative intraluminal application of capsaicin increases postoperative gastric and colonic motility in rats // J. Gastrointestinal Surgery. 2001. V. 5. P. 503–13. https://doi.org/10.1016/s1091-255x(01)80088-3
