Влияние лигандов никотиновых ацетилхолиновых рецепторов на адгезивные свойства гранулоцитов костного мозга мыши при воспалении
- Авторы: Жирова Э.А.1, Серов Д.А.1,2, Федорова Е.В.3, Сафронова В.Г.1
-
Учреждения:
- Институт биофизики клетки РАН, ФИЦ ПНЦБИ РАН
- Институт общей физики им. А.М. Прохорова РАН
- Институт теоретической и экспериментальной биофизики РАН
- Выпуск: Том 41, № 2 (2024)
- Страницы: 99-114
- Раздел: СТАТЬИ
- URL: https://ter-arkhiv.ru/0233-4755/article/view/667455
- DOI: https://doi.org/10.31857/S0233475524020017
- EDN: https://elibrary.ru/xxhoiw
- ID: 667455
Цитировать
Аннотация
Первой стадией выхода зрелых нейтрофильных гранулоцитов из костного мозга в кровь и последующей миграции в очаг воспаления является прикрепление к эндотелию сосудов. Эндо- и экзогенные факторы модифицируют способность клеток к адгезии через рецепторы разного типа, включая никотиновые рецепторы ацетилхолина (нАХР). Однако участие нАХР в регуляции адгезии гранулоцитов костного мозга (КМ-гранулоцитов) и роль сигнальных компонентов в действии никотина исследованы мало. Целью данной работы явилось изучение роли нАХР разных типов в регуляции адгезии КМ-гранулоцитов мыши при остром воспалении. Работа проведена на КМ-гранулоцитах мышей линии BALB/c с применением статической адгезионной пробы, конфокальной микроскопии, ингибиторного анализа, ПЦР с обратной транскрипцией. Роль типов нАХР оценена с помощью селективных антагонистов: 10 нМ α-CTX (α7), 10 нМ GIC и 5 нМ MII (α3β2), 200 нМ MII (α3β2 и α7), RgIA и Vc1.1 (α9α10). Показано, что количество прикрепившихся КМ-гранулоцитов, оцениваемое по оптической плотности, не различалось у животных с острым воспалением и без него. Никотин (0.01–100 мкМ, 30 мин) значительно усиливал адгезию клеток животных контрольной и “воспалительной” групп. Токсины α-CTX, RgIA и Vc1.1 усиливали адгезивность клеток мышей обеих групп, как и 200 нМ MII – в контрольной группе. В пробах с флуоресцентным мечением показана экспрессия субъединиц α7 и α10 нАХР на мембране нативных КМ-гранулоцитов. С помощью ингибиторов обнаружено, что действие никотина на адгезию КМ-гранулоцитов опосредовано гетеротримерными G-белками, PKC, PI3K и ROCK как в норме, так и при наличии воспаления. В регуляции адгезии КМ-гранулоцитов мыши участвуют преимущественно α7 и α9α10 типы нАХР, вклад α3(α6*)β2 незначителен, возможно вследствие низкой экспрессии α3/α6*-субъединиц. Роль α7 нАХР, присутствующих на мембране КМ-гранулоцитов конвенционально, в регуляции адгезивности клеток никотином усиливается при развитии воспаления в организме.
Ключевые слова
Полный текст

Об авторах
Э. А. Жирова
Институт биофизики клетки РАН, ФИЦ ПНЦБИ РАН
Email: safronova@icb.psn.ru
Россия, 142290, Пущино, Московской обл.
Д. А. Серов
Институт биофизики клетки РАН, ФИЦ ПНЦБИ РАН; Институт общей физики им. А.М. Прохорова РАН
Email: safronova@icb.psn.ru
Россия, 142290, Пущино, Московской обл.; 119991, Москва
Е. В. Федорова
Институт теоретической и экспериментальной биофизики РАН
Email: safronova@icb.psn.ru
Россия, 142290, Пущино Московской обл.
В. Г. Сафронова
Институт биофизики клетки РАН, ФИЦ ПНЦБИ РАН
Автор, ответственный за переписку.
Email: safronova@icb.psn.ru
Россия, 142290, Пущино, Московской обл.
Список литературы
- Itou T., Collins L.V., Thoren F.B., Dahlgren C., Karlsson A. 2006. Changes in activation states of murine polymorphonuclear leukocytes (PMN) during inflammation: A comparison of bone marrow and peritoneal exudate PMN. Clin. Vaccine Immunol. 13, 575–583. doi: 10.1128/CVI.13.5.575–583.2006
- Liew P.X., Kubes P. 2019. The neutrophil’s role during health and disease. Physiol. Rev. 99, 1223–1248. doi: 10.1152/physrev.00012.2018
- Rosales C. 2020. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol. 108, 377–396. doi: 10.1002/JLB.4MIR0220–574RR
- Nauseef W.M., Borregaard N. 2014. Neutrophils at work. Nat. Immunol. 15, 602–611. doi: 10.1038/ni.2921
- Hajishengallis G., Moutsopoulos N.M., Hajishengallis E., Chavakis T. 2016. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin. Immunol. 28, 146–158. doi: 10.1016/j.smim.2016.02.002
- Tan S.-Y., Weninger W. 2017. Neutrophil migration in inflammation: intercellular signal relay and crosstalk. Current Opinion Immunol. 44, 34–42. doi: 10.1016/j.coi.2016.11.002
- Richardson I.M., Calo C.J., Hind L.E. 2021. Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection. Front. Immunol. 27, 12:661537. doi: 10.3389/fimmu.2021.661537
- Root R.K. 1990. Leukocyte adhesion proteins: Their role in neutrophil function. Trans Am. Clin. Climatol. Assoc. 101, 207–224.
- Kolaczkowska E., Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175. doi: 10.1038/nri3399
- Nourshargh S., Alon R. 2014. Leukocyte migration into inflamed tissues. Immunity. 41, 694–707. doi.org/10.1016/j.immuni.2014.10.008
- Filippi M.-D. 2019. Neutrophil transendothelial migration: Updates and new perspectives. Blood. 133, 2149–2158. doi: 10.1182/blood-2018–12–844605
- Bouti P., Webbers S.D.S., Fagerholm S.C., Alon R., Moser M., Matlung H.L., Kuijpers T.W. 2021. b2 Integrin signaling cascade in neutrophils: More than a single function. Front. Immunol. 11, 619925. doi: 10.3389/fimmu.2020.619925
- Margraf A., Lowell C.A., Zarbock A. 2022. Neutrophils in acute inflammation: Current concepts and translational implications. Blood. 139, 2130–2144. doi: 10.1182/blood.2021012295
- Ley K., Laudanna C., Cybulsky M.I., Nourshargh S. 2007. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689. doi: 10.1038/nri2156
- Futosi K., Fodor S., Mócsai A. 2013. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 17, 638–650. doi: 10.1016/j.intimp.2013.06.034
- Qiu D., Zhang L., Zhan J., Yang Q., Xiong H., Hu W., Ji Q., Huang J. 2020. Hyperglycemia decreases epithelial cell proliferation and attenuates neutrophil activi-ty by reducing ICAM-1 and LFA-1 expression levels. Front. Genet. 11, 616988. doi: 10.3389/fgene.2020.616988
- Conley H.E., Sheats M.K. 2023. Targeting neutrophil β2-integrins: A review of relevant resources, tools, and methods. Biomolecules. 13, 892.
- González-Amaro R. 2011. Cell adhesion, inflammation and therapy: Old ideas and a significant step forward. Acta Pharmacol. Sinica. 32, 1431–1432. doi: 10.1038/aps.2011.154
- Ren C., Tong Y.L., Li J.C., Lu Z.Q., Yao Y.M. 2017. The protective effect of alpha 7 nicotinic acetylcholine receptor activation on critical illness and its mechanism. Int. J. Biol. Sci. 13, 46–56. doi: 10.7150/ijbs.16404
- Belchamber K.B.R., Hughes M.J., Spittle D.A., Walker E.M., Sapey E. 2021. New pharmacological tools to target leukocyte trafficking in lung disease. Front. Immunol. 12, 704173. doi: 10.3389/fimmu.2021.704173
- Safronova V.G., Vulfius K.A., Astashev M.E., Tikho-nova I.V., Serov D.A., Jirova E.A., Pershina E.V., Senko D.A., Zhmak M.N., Kasheverov I.E., Tsetlin V.I. 2021. α9α10 nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology. 226, 152047. doi: 10.1016/j.imbio.2020.152047
- Fujii T., Mashimo M., Moriwaki Y., Misawa H., Ono S., Horiguchi K., Kawashima K. 2017. Expression and function of the cholinergic system in immune cells. Front. Immunol. 8, 1085. doi: 10.3389/fimmu.2017.01085
- Herman M., Robert Tarran R. 2020. E-cigarettes, ni-cotine, the lung and the brain: Multi-level cascading pathophysiology. J. Physiol. 598, 5063–5071. doi: 10.1113/JP278388
- Shelukhina I., Siniavin A., Kasheverov I., Ojomoko L., Tsetlin V., Utkin Y. 2023. α7- and α9-containing nicotinic acetylcholine receptors in the functioning of immune system and in pain. Int. J. Mol. Sci. 24, 6524. doi: 10.3390/ijms24076524
- Slevin M., Iemma R.S., Zeinolabediny Y., Liu D., Ferris G.R., Caprio V., Phillips N., Di Napoli M., Guo B., Zeng X., Al Baradie R., Binsaleh N.K., McDowell G., Fang W.H. 2018. Acetylcholine inhibits monomeric С-reactive protein induced inflammation, endothelial cell adhesion, and platelet aggregation; A potential therapeutic? Front. Immunol. 9, 2124. doi: 10.3389/fimmu.2018.02124
- Hamano R., Takahashi H.K., Iwagaki H., Yoshino T., Nishibori M., Tanaka N. 2006. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock. 26, 358–364. doi: 10.1097/01.shk.0000228168.86845.60
- Sato Y., Kosuke Maruyama K., Mikami M., Sato S. 2023. Effects of nicotine and lipopolysaccharide stimulation on adhesion molecules in human gingival endothelial cells. Odontology. 111, 428–438. doi: 10.1007/s10266–022–00753–1
- Scott D.A., Palmer R.M. 2002. The influence of tobacco smoking on adhesion molecule profiles. Tob. Induc. Dis. 1, 7–25. doi: 10.1186/1617–9625–1–1–7
- Li Z.-Z., Guo Z.-Z., Zhang Z., Cao Q.-A., Zhu Y.-J., Yao H.-L., Wu L.-L., Dai Q.-Y. 2015. Nicotine-induced upregulation of VCAM-1, MMP-2, and MMP-9 through the α7-nAChR-JNK pathway in RAW264.7 and MOVAS cells. Mol. Cell. Biochem. 399, 49–58. doi: 10.1007/s11010–014–2231-z
- Yong T., Zheng M.Q., Linthicum D.S. 1997. Nicotine induces leukocyte rolling and adhesion in the cerebral microcirculation of the mouse. J. Neuroimmunol. 80, 158–164. doi: 10.1016/s0165–5728(97)00151–3
- Grando S.A. 2006. Cholinergic control of epidermal cohesion. Exp. Dermatol. 15, 265–282. doi: 10.1111/j.0906–6705.2006.00410.x
- Chernyavsky A.I., Arredondo J., Vetter D.E., Grando S.A. 2007. Central role of alpha9 acetylcholine receptor in coordinating keratinocyte adhesion and motility at the initiation of epithelialization. Exp. Cell. Res. 313, 3542–3555. doi: 10.1016/j.yexcr.2007.07.011
- Chernyavsky A.I., Galitovskiy V., Grando S.A. 2015. Molecular mechanisms of synergy of corneal muscarinic and nicotinic acetylcholine receptors in upregulation of E-cadherin expression. Int. Immunopharmacol. 29, 15–20. doi: 10.1016/j.intimp.2015.04.036
- Mashimo M., Moriwaki Y., Misawa H., Kawashima K., Fujii T. 2021. Regulation of Immune functions by non-neuronal acetylcholine (ACh) via muscarinic and nicotinic ACh receptors. Int. J. Mol. Sci. 22, 6818. doi: 10.3390/ijms22136818
- Safronova V.G., Vulfius C.A., Shelukhina I.V, Mal’tseva V.N., Berezhnov A.V, Fedotova E.I., Miftahova R.G., Kryukova E.V., Grinevich A.A., Tsetlin V.I. 2016. Nicotinic receptor involvement in regulation of functions of mouse neutrophils from inflammatory site. Immunobiology. 221, 761–772. doi: 10.1016/j.imbio.2016.01.016
- Boxio R., Bossenmeyer-Pourie C., Steinckwich N., Dournon C., Nusse O. 2004. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol. 75, 604–611. doi: 10.1189/jlb.0703340
- Filina J.V., Gabdoulkhakova A.G., Safronova V.G. 2014. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes. Cell. Signal. 26, 2138–2146. doi: 10.1016/j.cellsig.2014.05.017
- Shelukhina I.V., Kryukova E.V., Lips K.S., Tsetlin V.I., Kummer W. 2009. Presence of alpha7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective alpha-neurotoxins in histochemistry. J. Neurochem. 109, 1087–1095. doi: 10.1111/j.1471–4159.2009.06033.x
- Lykhmus O., Voytenko L.P., Lips K.S., Bergen I., Krasteva-Christ G., Vetter D.E., Kummer W., Skok M. 2017. Nicotinic acetylcholine receptor α9 and α10 subunits are expressed in the brain of mice. Front. Cell. Neurosci. 11, 282. doi: 10.3389/fncel.2017.00282
- Russell M.A., Jarvis M., Iyer R., Feyerabend C. 1980. Relation of nicotine yield of cigarettes to blood nicotine concentrations in smokers. Br. Med. J. 280, 972–976. doi: 10.1136/bmj.280.6219.972
- Benowitz N.L., Hukkanen J., Jacob P. 3rd. 2009. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol. 192, 29–60. doi: 10.1007/978–3–540–69248–5_2
- Alama A., Bruzzo C., Cavalieri Z., Forlani A., Utkin Y., Casciano I., Romani M. 2011. Inhibition of the nicotinic acetylcholine receptors by cobra venom α-neurotoxins: Is there a perspective in lung cancer treatment? PLoS One. 6, e20695. doi: 10.1371/journal.pone.0020695
- McIntosh J.M., Dowell C., Watkins M., Garrett J.E., Yoshikami D., Olivera B.M. 2002. Alpha-conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors. J. Biol. Chem. 277, 33610–33615. doi: 10.1074/jbc.M205102200
- Chi S.W., Kim D.H., Olivera B.M., McIntosh J.M., Han K.H. 2004. Solution conformation of alpha-conotoxin GIC, a novel potent antagonist of alpha3beta2 nicotinic acetylcholine receptors. Biochem. J. 1, 347–352. doi: 10.1042/BJ20031792
- Sambasivarao S.V., Roberts J., Bharadwaj V.S., Slingsby J.G., Rohleder C., Mallory C., Groome J.R., McDougal O.M., Maupin M.C. 2014. Acetylcholine promotes binding of α-conotoxin MII for α3β2 nicotinic acetylcholine. Chembiochem. 15, 413–424. doi: 10.1002/cbic.201300577
- Kasheverov I., Kudryavtsev D., Shelukhina I., Nikolaev G., Utkin Y., Tsetlin V. 2022. Marine origin ligands of nicotinic receptors: Low molecular compounds, peptides and proteins for fundamental research and practical applications. Biomolecules. 12, 189. doi: 10.3390/biom12020189
- Bouzat C., Sine S.M. 2018. Nicotinic acetylcholine receptors at the single-channel level. Br. J. Pharmacol. 175, 1789–1804. doi: 10.1111/bph.13770
- Corringer P.J., Poitevin F., Prevost M.S., Sauguet L., Delarue M., Changeux J.P. 2012. Structure and pharmacology of pentameric receptor channels: From bacteria to brain. Structure. 20, 941–956. doi: 10.1016/j.str.2012.05.003
- Papke R.L., Lindstrom J.M. 2020. Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology. 168, 108021. doi: 10.1016/j.neuropharm.2020.108021
- Stokes C., Treinin M., Papke R.L. 2015. Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 36, 514–523. doi: 10.1016/j.tips.2015.05.002
- King J.R., Kabbani N. 2016. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth. J. Neurochem. 138, 532–545. doi: 10.1111/jnc.13660
- Oz M., King J.R., Yang K.-H.S., Khushaish S., Tchugunova Y., Khajah M.A., Luqmani Y.A., Kabbani N. 2023. α7 nicotinic acetylcholine receptor interaction with G proteins in breast cancer cell proliferation, motility, and calcium signaling. PLoS One. 18, e0289098. doi: 10.1371/journal.pone.0289098
- Brown E.J., Frazier W.A. 2001. Integrin-associated protein (CD47) and its ligands. Trends Cell. Biol. 11, 130–135. doi: 10.1016/s0962–8924(00)01906–1
- Locht C., Antoine R. 2021. The history of pertussis toxin. Toxins (Basel). 13, 623. doi: 10.3390/toxins13090623
- St-Pierre S., Jiang W., Roy P., Champigny C., Le-Blanc E., Morley B.J., Hao J., Simard A.R. 2016. Nicotinic acetylcholine receptors modulate bone marrow-derived pro-inflammatory monocyte production and survival. PLoS One. 11, e0150230. doi: 10.1371/journal.pone.0150230
- Tracey K.J. 2002. The inflammatory reflex. Nature. 420, 853–859. doi: 10.1038/nature01321
- Pavlov V.A., Chavan S.S., Tracey K.J. 2018.Molecular and functional neuroscience in immunity. Ann. Rev. Immunol. 36, 783–812. doi: 10.1146/annurev-immunol-042617–053158
- Caravaca A.S., Gallina A.L., Tarnawski L., Shavva V.S., Colas R.A., Dalli J., Malin S.G., Hult H., Arnardottir H., Olofsson P.S. 2022. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc. Natl. Acad. Sci. USA. 119, e2023285119. doi: 10.1073/pnas.2023285119
- Grassi L., Pourfarzad F., Ullrich S., Merkel A., Were F., Carrillo-de-Santa-Pau E., Yi G., Hiemstra I.H., Tool A.T.J., Mul E., Perner J., Janssen-Megens E., Berentsen K., Kerstens H., Habibi E., Gut M., Yaspo M.L., Linser M., Lowy E., Datta A., Clarke L., Flicek P., Vingron M., Roos D., van den Berg T.K., Heath S., Rico D., Frontini M., Kostadima M., Gut I., Valencia A., Ouwehand W.H., Stunnenberg H.G., Martens J.H.A., Kuijpers T.W. 2018. Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. Cell Reports. 24, 2784–2794. doi: 10.1016/j.celrep.2018.08.018
- Khoyratty T.E., Ai Z., Ballesteros I., Eames H.L., Mathie S., Martín-Salamanca S., Wang L., Hemmings A., Willemsen N., von Werz V., Zehrer A., Walzog B., van Grinsven E., Hidalgo A., Udalova I.A. 2021. Distinct transcription factor networks control neutrophil-driven inflammation. Nat. Immunol. 22, 1093–1106. doi: 10.1038/s41590–021–00968–4
- Evrard M., Kwok I.W.H., Chong S.Z., Teng K.W.W., Becht E., Chen J., Sieow J.L., Penny H.L., Ching G.C., Devi S., Adrover J.M., Li J.L.Y., Liong K.H., Tan L., Poon Z., Foo S., Chua J.W., Su I.-H., Balabanian K., Bachelerie F., Biswas S.K., Larbi A., Hwang W.Y.K., Madan V., Koeffler H.P., Wong S.C., Newell E.W., Hidalgo A., Ginhoux F., Ng L.G. 2019. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Blood. 133, 2149–2158. doi: 10.1182/blood-2018–12–844605
- Serov D.A., Tikhonova I.V., Safronova V.G., Astashev M.E. 2021. Calcium activity in response to nAChR ligands in murine bone marrow granulocytes with different Gr-1 expression. Cell Biol. International. 45, 1533–1545. doi: 10.1002/cbin.11593
- Yvan-Charvet L., Ng L.G. 2019. Granulopoiesis and neutrophil homeostasis: A metabolic, daily balancing act. Trends Immunol. 40, 598–612. doi: 10.1016/j.it.2019.05.004
- Cormier A., Paas Y., Zini R., Tillement J.-P., Lagrue G., Changeux J.-P., Grailhe R. 2004. Long-term exposure to nicotine modulates the level and activity of acetylcholine receptors in white blood cells of smokers and model mice. Mol. Pharmacol. 66, 1712–1718. doi: 10.1124/mol.104.000463
- Cesaro L., Pinna L.A., Salvi M. 2015. A comparative analysis and review of lysyl residues affected by posttranslational modifications. Curr. Genomics. 16, 128–138. doi: 10.2174/1389202916666150216221038
- Buccitelli C., Selbach M. 2020. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644. doi: 10.1038/s41576–020–0258–4
Дополнительные файлы
