Shock initiation of detonation in a mixture of gelled nitromethane with microballoons

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Using a multichannel laser interferometer, a series of experiments with recording of particle velocity profiles have been carried out to determine the dynamics of shock initiation of detonation in the mixtures of nitromethane with microballoons, which are heterogeneous explosives with a controlled charge structure. It is shown that the addition of 5–8 wt.% microballoons to nitromethane reduces the shock wave amplitude required to initiate detonation by almost an order of magnitude. At 8 wt.% of microballoons, depending on the initiation conditions, the realization of both steady Chapman-Jouguet detonation and weak detonation is observed.

全文:

受限制的访问

作者简介

M. Shakula

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: utkin@icp.ac.ru
俄罗斯联邦, Chernogolovka, Moscow region; Dolgoprudnyy, Moscow region

A. Utkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: utkin@icp.ac.ru
俄罗斯联邦, Chernogolovka, Moscow region

V. Mochalova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
俄罗斯联邦, Chernogolovka, Moscow region

V. Lavrov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
俄罗斯联邦, Chernogolovka, Moscow region

A. Savchenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
俄罗斯联邦, Chernogolovka, Moscow region

V. Vilkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: utkin@icp.ac.ru
俄罗斯联邦, Chernogolovka, Moscow region; Moscow

参考

  1. Lee J.J., Frost D.L., Lee J.H.S., Dremin A. // Shock Waves. 1995. V. 5. № 1–2. P. 115.
  2. Presles H.N., Vidal P., Gois J.C., Khasainov B.A., Ermolaev B. S. // Shock Waves. 1995. V. 4. № 6. P. 325.
  3. Satonkina N.P., Ershov A.P., Kashkarov A.O., Rubtsov I.A. // RSC adv. 2020. V. 10. № 30. P. 17620.
  4. Yunoshev A.S., Plastinin A.V., Rafeichik S.I. // Combust. Explos. Shock Waves. 2017. V. 53. P. 738.
  5. Yang M., Ma H., Shen Z. // J. Energ. Mater. 2019. V. 37. № 4. P. 459.
  6. Busby T., Smith J., Sheehan P., Oxley J. // Propellants, Explos., Pyrotech. 2023. V. 48. №8. P. e202200324.
  7. Lavrov V.V., Zubareva A.N., Komissarov P.V. // Russ. J. Phys. Chem. B. 2019. V. 13. № 4. P. 603.
  8. Dattelbaum D.M., Sheffield S.A., Stahl D.B. et al. // Proc. 14th Intern. Detonation Sympos. Arlington, VA, USA: Office of Naval Research, 2010. P. 611.
  9. Engelke R. // Phys. Fluids. 1979. V. 22. № 9. P. 1623.
  10. Khasainov B.A., Ermolaev B.S., Presles H.N. // Tenth Intern. Sympos. on Detonation. Arlington, VA, USA: Office of Naval Research, 1993. P. 33395.
  11. Sabourin J.L., Yetter R.A., Asay B.W. et al. // Propellants, Explos., Pyrotech. 2009. V. 34. № 5. P. 385.
  12. Gois J.C., Campos J., Mendes R. // Proc. Conf. Amer. Phys. Soc. on Shock Compression of Condensed Matter. V. 2. Seattle, Washington: AIP Press, 1996. P. 827.
  13. Mochalova V., Utkin A., Shakula M., Lavrov V. // Phys. Fluids. 2023. V. 35. № 1. P. 017117.
  14. Higgins A., Loiseau J., Mi X.C. // AIP Conf. Proc. 2018. V. 1979. № 1. P. 100019.
  15. Kondrikov B.N., Kozak G.D., Oblomskii V.B., Savkin A.V. // Combust., Explos., Shock Waves. 1987. V. 23. № 2.
  16. Mochalova V., Utkin A., Shakula M. et al. // Phys. Fluids. 2024. V. 36. № 2. P. 026112.
  17. Mochalova V., Utkin A., Shakula M. et al. // Phys. Fluids. 2021. V. 33. № 4. P. 046108.
  18. Dremin A.N., Savrov S.D., Trofimov V.S., Shvedov K.K. Detonation Waves in Condensed Media. Moscow: Nauka, 1970.
  19. Chaiken R.F. // J. Chem. Phys. 1960. V. 33. № 3. P. 760.
  20. Sheffield S.F., Weese R.K., Wardell J.F. et al. // Proc. 13th Intern. Deton. Sympos. Arlington, VA, USA: Office of Naval Research, 2006. P. 401.
  21. Bouyer V., Darbord I., Hervé P. et al. // Combust. Flame. 2006. V. 144. № 1–2. P. 139.
  22. Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Shock-Wave Phenomena in Condensed Media. Moscow: “Yanus-K”,1996.
  23. Mader C.L. Numerical modeling of detonations. Los Alamos Series in Basic and Applied Sciences, 1979.
  24. Utkin A., Mochalova V., Zubareva A. et al. // Propellants, Explos., Pyrotech. 2022. V. 47. № 9. e202200051.
  25. Utkin A.V., Mochalova V.M., Rogacheva A.I., Yakushev V.V. // Combust., Explos., Shock Waves. 2017. V. 53. № 2. P. 199.
  26. Wang Z., Xue K., Mi X. // Phys. Fluids. 2024. V. 36. № 2. P. 023336.
  27. Ermolaev B.S., Sulimov A.A. Convective Combustion and Low-Speed Detonation of Porous Energy Materials. Torus Press Moscow. 2017.
  28. Ermolaev B.S. Belyaev A.A., Roman’kov A.V. et al. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 646.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of the experiments on shock-wave initiation of detonation.

下载 (255KB)
3. Fig. 2. Schematic diagram of shock-wave initiation of detonation of liquid explosives.

下载 (209KB)
4. Fig. 3. Velocity profiles at the boundary with water for nitromethane.

下载 (406KB)
5. Fig. 4. Velocity profiles at the boundary with water for a mixture of nitromethane with 5 wt.% microspheres.

下载 (649KB)
6. Fig. 5. Evolution of the wave profile in t–x coordinates for a mixture of nitromethane with 5 wt.% microspheres.

下载 (245KB)
7. Fig. 6. Velocity profiles at the boundary with water for a mixture of nitromethane with 8 wt.% microspheres.

下载 (602KB)
8. Fig. 7. Evolution of the wave profile in t–x coordinates for a mixture of nitromethane with 8 wt.% microspheres.

下载 (259KB)
9. Fig. 8. Mass velocity profiles at the water interface for a mixture of nitromethane with 8 wt% microspheres at high initiation pressure.

下载 (535KB)

版权所有 © Russian Academy of Sciences, 2025