Flameless Combustion of Ballasted Energy Systems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The review presents the available information on the process of flameless combustion of energy materials in ballasted systems. The methods of its organization, the results of studies of the process itself and the properties of the resulting composite materials, as well as its application for obtaining new functional materials are demonstrated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yu. Mikhailov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: vva@icp.ac.ru
Ресей, Moscow

V. Aleshin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vva@icp.ac.ru
Ресей, Moscow

A. Bakeshko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vva@icp.ac.ru
Ресей, Moscow

V. Smirnov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: vva@icp.ac.ru
Ресей, Moscow

Әдебиет тізімі

  1. Andreev K.K. Termicheskoe razlozhenie i gorenie vzryv chatykh veshchestv [Thermal Decomposition and Combustion of Explosives], Nauka, Moscow, 1966, pp. 346. [in Russian].
  2. Kornilova G.E., Lurie V.A., Svetlov B.S. // Trudy chem-tech instituta by D.I. Mendeleev. 1969. V. 62. P. 62-66. (in Russian). EDN: YCXLTR
  3. Aleksandrov V.V., Boldyreva A.V., Boldyrev V.V., Tukhtaev R.K. // Combust. Explos. Shock Waves. 1973. V. 9, № 1, P. 117. https://doi.org/10.1007/BF00740372
  4. Ananev A.B., Istratov A.G. et al. // Khim. Fizika. 2001. Т. 20. № 12. С. 47. [in Russian].
  5. Marshakov V.N., Kolesnikov-Svinarev V.I., Finyakov S.V. // Russ. J. Phys. Chem. B. 2009. V. 3. № 1. P. 85. https://doi.org/ 10.1134/S199079310901014X
  6. Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17. №. 2. P. 399. https://doi.org/10.1134/S1990793123020112
  7. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. // Chem. Rev. 2016. V. 116. №. 23. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  8. Chick L.A., Pederson L.R., Maupin G., Bates J.L., Thomas L.E., Exarhos G.J. // Mater. Lett. 1990. V. 10. P. 6. https://doi.org/10.1016/0167-577X(90)90003-5
  9. Singanahally T. Aruna, Mukasyan A.S. // Current Opinion in Solid State and Materials Science. 2008. V. 12. P. 44. https://doi.org/10.1016/j.cossms.2008.12.002
  10. Rosljakov S.I., Kovalev D.Ju., Rogachev A.S. et al. // Doklady Chem. 2013. T. 449. № 3. С. 313. [in Russian]. https://doi.org/10.7868/S086956521309017X
  11. Pomogaǐlo A.D., Dzhardimalieva G.I. // Polym. Sci. A. 2004. V. 46. № 3.P. 250. https://doi.org/10.4028/www.scientific.net/SSP.94.323
  12. Pomogailo A.D., Rozenberg A.S., Dzhardimalieva G.I. // Russ. Chem. Rev. 2011. V. 80. № 3. P. 257. https://doi.org/10.1070/RC2011v080n03ABEH004079
  13. Sytschev A.E., Merzhanov A.G. // Russ. Chem. Rev. 2004. V. 73. № 2. P. 147. https://doi.org/10.1070/RC2004v073n02ABEH000837
  14. Mikhailov Yu.M., Plishkin N.A., Grigor’eva V.A., Baturin S.M. // Polym. Sci. A. 1996. V. 38. № 11. P. 1193. EDN: MOVOBR.
  15. Mikhailov Yu.M., Voyueva B.V., Leonova V.N., Grigor’eva V.A., Kalmykov Yu.B. // Polym. Sci. B. 2001. V. 43. № 5. P. 129.
  16. Mikhailov Yu.M., Leonova V.N. // Doklady Phys. Chem. 2002. V. 386. № 1-3. P. 203. https://doi.org/10.1023/A:1020338219537
  17. Strunin V.A., Mikhailov Y.M., D’yakov A.P., Leonova V.N., Manelis G.B. // Combust. Explos. Shock Waves. 2003. V. 39. № 4. P. 448. https://doi.org/10.1023/A:1024738922429
  18. Mikhailov Y.M., Aleshin V.V. Leonova V.N. // Combust. Explos. Shock Waves. 2007. V. 43. № 3. P. 334. https://doi.org/10.1007/s10573-007-0046-x
  19. Mikhailov Y.M., Aleshin V.V. // Russ. Chem. Bull. 2011. V. 60. № 9. P. 1802. https://doi.org/10.1007/s11172-011-0272-y
  20. Mikhailov Yu.M., Plishkin N.A., Karluk L.V., Baturin S.M. The mass for producing a porous abrasive tool and the method of its manufacture. SU Patent. 2064856 // Bull. Izobr. 1996. № 8. P. 10.
  21. Mikhailov Y.M., Leonova V.N. // Doklady Chem. 2002. V. 386. № 1.
  22. Mikhailov Yu.M., Aleshin V.V., Zhemchugova L.V., Bakeshko A.V., Kovalev D.Yu. // Int. J. Self-Prop. High-Temp. Synth. 2021. V. 30. № 1. P. 11. https://doi.org/10.3103/S1061386221010088
  23. Mikhailov Y.M., Aleshin V.V., Zhemchugova L.V., Smirnov V.S., Kovalev D.Yu. // Combust. Explos. Shock Waves. 2023. V. 59. № 5. P. 563. https://doi.org/10.1134/S0010508223050040
  24. Mikhailov Yu.M., Smirnov V.S., Zhemchugova L.V., Aleshin V.V., Bakeshko A.V. // Combust. Explos. Shock Waves. 2024. V. 60. № 6. https://doi.org/10.1134/S0010508224060017 (in print).
  25. Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 399. https://doi.org/10.1134/S1990793123020112
  26. Marshakov V.N., Krupkin V.G. Rashkovskii S.A. // Russ. J. Phys. Chem. 2020. V. 14. № 6. P. 934. EDN: CWCEUH. https://doi.org/10.1134/S1990793120060111
  27. Mikhailov Yu.M., Aleshin V.V., Bakeshko A.V., Smirnov V.S. // Proc. 17th All Russian Sympos. on Combust. and Explos. Suzdal: “Forum-SM Ltd”, 2024. P. 182. [In Russian].
  28. Michelson V.A. About ignition normal rate of fulminating gaseous mixtures. Moscow: Univer. Press, 1890. Part II. [In Russian].
  29. Rashkovskii S.A. // Combust Explos Shock Waves. 2005. V. 41. № 1. P. 35. https://doi.org/10.1007/s10573-005-0004-4
  30. Rogachev A.S., Mukas’yan A.S. // Combust. Explos. Shock Waves. 2015. V. 51. № 1. P. 53. https://doi.org/10.1134/S0010508215010050
  31. Mikhailov Y.M., Kalmykov Y.B., Aleshin V.V. // Combust. Explos. Shock Waves. 2019. V. 55. № 6. P. 661. https://doi.org/10.1134/S0010508219060054
  32. Mikhailov Yu.M., Aleshin V.V., Zhemchugova L.V., Kovalev D.Yu. // Int. J. Self-Prop. High-Temp. Synth. 2018. V. 27. № 3. P. 162. https://doi.org/ 10.3103/S106138621803007X
  33. Mikhailov Yu.M., Aleshin V.V., Kolesnikova A.M., Kovalev D.Yu., Ponomarev V.I. // Prop. Explos. Pyrotech. 2015. V. 40. № 1. P. 88. https://doi.org/10.1002/prep.201400049
  34. Mikhailov Yu.M., Aleshin V.V., Kolesnikova A.M., Zhemchugova L.V. & Maksimov Yu.V. // Russ. Chem. Bull. 2017. V. 66. № 6. P. 975. https://doi.org/10.1007/s11172-017-1841-5
  35. Mikhailov Yu.M., Aleshin V.V., Zhemchugova L.V., Bakeshko A.V., Kovalev D.Yu. // Int. J. Self-Prop. High-Temp. Synth. 2021, V. 30. № 1. P. 11. https://doi.org/10.3103/S1061386221010088.
  36. Mikhailov Yu.M., Kustov L.M., Aleshin V.V., Tarasov A.L., Leonova V.N. // Kataliz v promyshlennosti. 2011. № 1. P. 73. [In Russian].
  37. Mikhailov Y.M., Aleshin A.V., Zhemchugova L.V. et al. // Chem. Technol. Fuels Oils. 2012. V. 48. № 4. С. 253. https://doi.org/10.1007/s10553-012-0366-8

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Combustion products of a mixture of hexogen, iron (III) formate and hexamethylene diisocyanate (HMDI). Scanning electron microscopy [19].

Жүктеу (807KB)
3. Fig. 2. Dependence of maximum combustion temperature (1) and nickel particle size (2) in combustion products of a mixture of 35% hexogen, nickel carbonate and HMDI on the content of the latter [21].

Жүктеу (425KB)
4. Fig. 3. Temperature profile and stage of nickel carbonate reduction in the wave of flameless combustion of NC [33].

Жүктеу (1MB)
5. Fig. 4. Nickel particles in combustion products of a mixture of hexogen, nickel hydroxocarbonate and HMDI [21].

Жүктеу (1011KB)
6. Fig. 5. Temperature profile and stage of iron (III) oxide reduction in the wave of flameless combustion of hexogen [32].

Жүктеу (986KB)
7. Fig. 6. Nickel iron particles in the combustion products of a mixture of hexogen, iron (III) formate, cobalt carbonate, and HMDI [32].

Жүктеу (1MB)
8. Fig. 7. X-ray diffractogram of the products of flameless combustion of a mixture of hexogen, nickel hydroxocarbonate and HMDI (1) in comparison with the diffractogram of micron-sized nickel particles (2) [21].

Жүктеу (390KB)

© Russian Academy of Sciences, 2025