РАЗДЕЛЯЕМЫЕ ФИЗИЧЕСКИ-ОБУСЛОВЛЕННЫЕ НЕЙРОННЫЕ СЕТИ ДЛЯ РЕШЕНИЯ ЗАДАЧ УПРУГОСТИ
- Авторы: Еськин В.А1,2, Давыдов Д.В3,2, Гурьева Ю.В2, Мальханов А.О2, Сморкалов М.Е2,4
-
Учреждения:
- Нижегородский государственный университет
- Huawei Nizhny Novgorod Research Center
- Институт проблем машиностроения Российской академии наук
- Сколковский институт науки и технологий
- Выпуск: Том 65, № 9 (2025)
- Страницы: 1581-1596
- Раздел: ИНФОРМАТИКА
- URL: https://ter-arkhiv.ru/0044-4669/article/view/695400
- DOI: https://doi.org/10.31857/S0044466925090107
- ID: 695400
Цитировать
Полный текст
Аннотация
Представлен метод решения задач упругости, основанный на разделяемых физически-обусловленных нейронных сетях (SPINN), в сочетании с методом глубокой энергии (DEM). Были проведены численные эксперименты для ряда задач, показавшие, что этот метод обладает значительно более высокой скоростью сходимости и точностью, чем обычные физически-обусловленные нейронные сети (PINN) и даже SPINN, основанные на системе дифференциальных уравнений в частных производных (PDE). Кроме того, используя SPINN в рамках подхода DEM, можно решать задачи линейной теории упругости на сложных геометриях, что недостижимо с помощью PINN в рамках дифференциальных уравнений в частных производных. Рассмотренные задачи очень близки к промышленным задачам с точки зрения геометрии, нагрузки и параметров материала. Библ. 61. Фиг. 6. Табл. 8.
Об авторах
В. А Еськин
Нижегородский государственный университет; Huawei Nizhny Novgorod Research Center
Автор, ответственный за переписку.
Email: vasiliy.eskin@gmail.com
Нижний Новгород, Россия
Д. В Давыдов
Институт проблем машиностроения Российской академии наук; Huawei Nizhny Novgorod Research Center
Email: davidovdan274@yandex.ru
Нижний Новгород, Россия; Нижний Новгород, Россия
Ю. В Гурьева
Huawei Nizhny Novgorod Research Center
Email: gureva-yulya@list.ru
Нижний Новгород, Россия
А. О Мальханов
Huawei Nizhny Novgorod Research Center
Email: alexey.malkhanov@gmail.com
Нижний Новгород, Россия
М. Е Сморкалов
Huawei Nizhny Novgorod Research Center; Сколковский институт науки и технологий
Email: smorkalovne@gmail.com
Нижний Новгород, Россия; Москва, Россия
Список литературы
- L. Alzubaidi, J. Zhang, A.J. Humaidi, A.A. Dujaili, Y. Duan, O.A. Shamma, J. Santamar´ıa, M.A. Fadhel, M.A. Amidie, and L. Farhan, Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Springer Inter. Publ., 2021. https://doi.org/10.1186/s40537-021-00444-8
- Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015). http://www.nature.com/ articles/nature14539
- P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI: A Review of Machine Learning Interpretability Methods,” Entropy 23(1) (2021). https://www.mdpi.com/1099-4300/23/1/18
- S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F.S. Khan, and M. Shah, “Transformers in Vision: A Survey,” ACM Comput. Surv. 54(10), (2022). https://doi.org/10.1145/3505244
- A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, L. Kaiser, N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer, and J. Uszkoreit, “Tensor2Tensor for Neural Machine Translation,” 2018. https://arxiv.org/abs/1803.07416
- Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao, “Learning Deep Transformer Models for Machine Translation,” 2019. https://arxiv.org/abs/1906.01787
- S. Yao and X. Wan, “Multimodal transformer for multimodal machine translation,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, Jul. 2020, p. 4346–4350. https://aclanthology.org/2020.acl-main.400
- A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-Shot Text-to-Image Generation,” 2021. https://arxiv.org/abs/2102.12092
- S. Frolov, T. Hinz, F. Raue, J. Hees, and A. Dengel, “Adversarial text-to-image synthesis: A review,” Neural Networks 144, 187–209 (2021). https://www.sciencedirect.com/science/article/pii/S0893608021002823
- D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play,” Science 362(6419), 1140–1144 (2018). https://www.science.org/doi/abs/10.1126/science.aar6404
- J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver, “Mastering Atari, Go, chess and shogi by planning with a learned model,” Nature 588(7839), 604–609 (2020). http://www.nature.com/articles/s41586-020-03051-4
- L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” 2022. https://arxiv.org/abs/2203.02155
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707 (2019). https://linkinghub.elsevier.com/retrieve/pii/S0021999118307125
- S. Wang, S. Sankaran, and P. Perdikaris, “Respecting causality is all you need for training physics-informed neural networks,” 2022, arXiv:2203.07404. http://arxiv.org/abs/2203.07404
- H. Wang, X. Qian, Y. Sun, and S. Song, “A Modified Physics Informed Neural Networks for Solving the Partial Differential Equation with Conservation Laws,” https://ssrn.com/abstract=4274376
- V.A. Es’kin, D.V. Davydov, E.D. Egorova, A.O. Malkhanov, M.A. Akhukov, and M.E. Smorkalov, “About Modifications of the Loss Function for the Causal Training of Physics-Informed Neural Networks,” Doklady Mathematics 110(S1), S172–S192 (2024). [Online]. Available: https://link.springer.com/10.1134/S106456242460194X
- S. Wang, S. Sankaran, H. Wang, and P. Perdikaris, “An expert’s guide to training physics-informed neural networks,” 2023, arXiv:2308.08468.
- L. Lu, P. Jin, G. Pang, Z. Zhang, and G.E. Karniadakis, “Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators,” Nature Machine Intelligence 3(3), 218–229 (2021). https://doi.org/10.1038%2Fs42256-021-00302-5
- Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar, “Fourier Neural Operator with Learned Deformations for PDEs on General Geometries,” 2022, arXiv:2207.05209. https://arxiv.org/abs/2207.05209
- M.A. Krinitskiy, V.M. Stepanenko, A.O. Malkhanov, and M.E. Smorkalov, “A General Neural-NetworksBased Method for Identification of Partial Differential Equations, Implemented on a Novel AI Accelerator,” Supercomputing Frontiers and Innovations 9(3) (2022). https://superfri.org/index.php/superfri/article/view/ 439
- V. Fanaskov and I. Oseledets, “Spectral Neural Operators,” 2022, arXiv:2205.10573. https://arxiv.org/abs/2205. 10573
- O. Ovadia, A. Kahana, P. Stinis, E. Turkel, and G.E. Karniadakis, “ViTO: Vision Transformer-Operator,” mar 2023, arXiv:2303.08891. http://arxiv.org/abs/2303.08891
- H. Jin, E. Zhang, B. Zhang, S. Krishnaswamy, G.E. Karniadakis, and H.D. Espinosa, “Mechanical characterization and inverse design of stochastic architected metamaterials using neural operators,” 2023, arXiv:2311.13812.
- M. Raissi, P. Perdikaris, and G.E. Karniadakis, “Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations,” Part I, 1–22, arXiv:1711.10561v1. https://arxiv.org/abs/1711.10561
- “Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations,” Part II, 1–19, arXiv:1711.10566v1. https://arxiv.org/abs/1711.10566
- S. Cai, Z. Wang, F. Fuest, Y.J. Jeon, C. Gray, and G.E. Karniadakis, “Flow over an espresso cup: inferring 3-d velocity and pressure fields from tomographic background oriented schlieren via physics-informed neural networks,” J. Fluid Mech. 915 ( 2021). http://dx.doi.org/10.1017/jfm.2021.135
- D.C. Psichogios and L.H. Ungar, “A hybrid neural network-first principles approach to process modeling,” Aiche Journal 38, 1499–1511 (1992).
- I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural networks for solving ordinary and partial differential equations,” IEEE Transactions on Neural Networks 9(5), 987–1000 (1998). https://doi.org/10.1109%2F72.712178
- C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, Ramadhan, and A. Edelman, “Universal Differential Equations for Scientific Machine Learning,” 1–55, jan 2020, arXiv:2001.04385. http://arxiv. org/abs/2001.04385
- L. Yuan, Y.-Q. Ni, X.-Y. Deng, and S. Hao, “A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations,” J. Comput. Phys. 462, 11260 (2022). https://doi.org/10.1016/j.jcp.2022.111260 https://linkinghub.elsevier. com/retrieve/pii/S0021999122003229
- X. Jin, S. Cai, H. Li, and G.E. Karniadakis, “NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations,” J. Comput. Phys. 426, 109951 (2021). https://www.sciencedirect.com/science/article/pii/S0021999120307257
- L. Zhao, Z. Li, Z. Wang, B. Caswell, J. Ouyang, and G.E. Karniadakis, “Activeand transfer-learning applied to microscale-macroscale coupling to simulate viscoelastic flows,” J. Comput. Phys. 427, 110069 (2021), arXiv:2005.04382. https://doi.org/10.1016/j.jcp.2020.110069
- E. Kharazmi, Z. Zhang, and G.E. Karniadakis, “hp-VPINNs: Variational physics-informed neural networks with domain decomposition,” Comput. Meth. in Appl. Mech. and Engineer. 374, 113547 (2021), arXiv:2003.05385. https://doi.org/10.1016/j.cma.2020.113547
- L. Yang, X. Meng, and G.E. Karniadakis, “B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data,” J. Comput. Phys. 425, 109913 (2021), arXiv:2003.06097. https://doi.org/10.1016/j.jcp.2020.109913
- S. Cuomo, V.S. di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What’s next,” jan 2022, arXiv:2201.05624. http://arxiv.org/abs/2201.05624
- G. Pang, M. D’Elia, M. Parks, and G.E. Karniadakis, “nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications,” J. Comput. Phys. 422, 109760 (2020), arXiv:2004.04276. https://doi.org/10.1016/j.jcp.2020.109760
- R.G. Patel, I. Manickam, N.A. Trask, M.A. Wood, M. Lee, I. Tomas, and E.C. Cyr, “Thermodynamically consistent physics-informed neural networks for hyperbolic systems,” J. Comput. Phys. 449, 110754 (2022), arXiv:2012.05343. https://doi.org/10.1016/j.jcp.2021.110754 https://linkinghub.elsevier.com/retrieve/pii/S0021999121006495
- B. Liu, Y. Wang, T. Rabczuk, T. Olofsson, and W. Lu, “Multi-scale modeling in thermal conductivity of polyurethane incorporated with phase change materials using physics-informed neural networks,” Renewable Energy 220, 119565 (2024). https://www.sciencedirect.com/science/article/pii/S0960148123014805
- S. Cai, Z. Mao, Z. Wang, M. Yin, and G.E. Karniadakis, “Physics-informed neural networks (PINNs) for fluid mechanics: a review,” Acta Mechanica Sinica 37(12), 1727–1738 (2021). https://link.springer.com/10.1007/s10409021-01148-1
- G. Lin, P. Hu, F. Chen, X. Chen, J. Chen, J. Wang, and Z. Shi, “BINet: Learning to Solve Partial Differential Equations with Boundary Integral Networks,” 1–27, oct 2021, arXiv:2110.00352. http://arxiv.org/abs/2110.00352
- Q. He, D. Barajas-Solano, G. Tartakovsky, and A.M. Tartakovsky, “Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport,” Advances in Water Resources 141, 103610 (2020). https://linkinghub.elsevier.com/retrieve/pii/S0309170819311649
- E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes, “A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics,” Comput. Meth. in Appl. Mech. and Engineer. 379, 113741 (2021). https://www.sciencedirect.com/science/article/pii/S0045782521000773
- Z. Meng, Q. Qian, M. Xu, B. Yu, A.R. Yldz, and S. Mirjalili, “Pinn-form: A new physics-informed neural network for reliability analysis with partial differential equation,” Comput. Meth. in Appl. Mech. and Engineer. 414, 116172 (2023). https://www.sciencedirect.com/science/article/pii/S0045782523002967
- E. Samaniego, C. Anitescu, S. Goswami, V. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk, “An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications,” Comput. Meth. in Appl. Mech. and Engineer. 362, 112790 (2020). https://www.sciencedirect.com/science/article/pii/S0045782519306826
- L. Ning, Z. Cai, H. Dong, Y. Liu, and W. Wang, “A peridynamic-informed neural network for continuum elastic displacement characterization,” Comput. Meth. in Appl. Mech. and Engineer. 407, 115909 (2023). https://www.sciencedirect.com/science/article/pii/S0045782523000324
- W. Hao, L. Tan, X. Yang, D. Shi, M. Wang, G. Miao, and Y. Fan, “A physicsinformed machine learning approach for notch fatigue evaluation of alloys used in aerospace,” International Journal of Fatigue 170, 107536 (2023). https://www.sciencedirect.com/science/article/pii/S0142112323000373
- B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave equation with physics-informed deep learning,” jun 2020, arXiv:2006.11894. http://arxiv.org/abs/2006.11894
- L. Ning, Z. Cai, H. Dong, Y. Liu, and W. Wang, “Physics-informed neural network frameworks for crack simulation based on minimized peridynamic potential energy,” Comput. Meth. in Appl. Mech. and Engineer. 417, 116430 (2023). https://www.sciencedirect.com/science/article/pii/S0045782523005546
- A. Harandi, A. Moeineddin, M. Kaliske, S. Reese, and S. Rezaei, “Mixed formulation of physics-informed neural networks for thermo-mechanically coupled systems and heterogeneous domains,” Inter. J. Numeric. Meth. Engineer. Nov. 2023. http://dx.doi.org/10.1002/nme.7388
- J. Cho, S. Nam, H. Yang, S.-B. Yun, Y. Hong, and E. Park, “Separable physics-informed neural networks,” 2023, arXiv:2306.15969.
- L.D. Landau and E.M. Lifshitz, Theory of Elasticity. Volume 7 if Course of Theoretical Physics, 3rd ed. Pergamon press, 1986.
- K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks 2(5), 359–366 (1989). https://www.sciencedirect.com/science/article/pii/0893608089900208
- A. Griewank and A. Walther, Evaluating Derivatives, 2nd ed. Society for Industrial and Applied Mathematics, 2008. https://epubs.siam.org/doi/abs/10.1137/1.9780898717761
- S. Wang, Y. Teng, and P. Perdikaris, “Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks,” SIAM J. Sci. Comput. 43(5), A3055—A3081 (2021). https://doi.org/10.1137/20M1318043
- S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to train: A neural tangent kernel perspective,” J. Comput. Phys. 449, 110768 (2022). https://www.sciencedirect.com/science/article/pii/S002199912100663X
- A.L. Caterini and D.E. Chang, Generic Representation of Neural Networks. Cham: Springer Inter. Publ., 2018, p. 23–34. https://doi.org/10.1007/978-3-319-75304-1_3
- S. Mishra and R. Molinaro, “Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs,” IMA Journal of Numerical Analysis 42(2), 981–1022 (2021). https://doi.org/10.1093/imanum/drab032
- J. Cho, S. Nam, H. Yang, S.-B. Yun, Y. Hong, and E. Park, “Separable physics-informed neural networks,” Advances in Neural Information Processing Systems, 2023.
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Ko¨pf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library. Red Hook, NY, USA: Curran Associates Inc., 2019.
- “NVIDIA Modulus v22.09 linear elasticity,” https://docs.nvidia.com/deeplearning/modulus/modulus-v2209/ user_guide/foundational/linear_elasticity.html#:$\sim$:text=Modulus%20offers%20the%20capability%20of,a% 20variety%20of%20boundary%20conditions, accessed: 2023-11-21.
- D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 2014. https://arxiv.org/abs/1412.6980
Дополнительные файлы




