ВЕРИФИКАЦИЯ ЧИСЛЕННОГО АЛГОРИТМА НА ОСНОВЕ КВАЗИГИДРОДИНАМИЧЕСКИХ УРАВНЕНИЙ НА ПРИМЕРЕ МОДЕЛИРОВАНИЯ ЗАДАЧ ТЕРМОГРАВИТАЦИОННОЙ КОНВЕКЦИИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Показано, что квазигидродинамический алгоритм позволяет моделировать течения вязкой несжимаемой жидкости в задачах термогравитационной конвекции при больших числах Грасгофа, включая корректное описание возникновения колебательного процесса. Приведены тесты для квадратной и прямоугольной областей. Расчеты выполнены в рамках реализации квазигидродинамического алгоритма в открытом пакете OpenFOAM. Библ. 16. Фиг. 12. Табл. 3.

Об авторах

М. А Кирюшина

ИПМ им. Келдыша РАН

Email: m_ist@mail.ru
Москва

Т. Г Елизарова

ИПМ им. Келдыша РАН

Москва

А. С Епихин

ИСП им. В.П. Иванникова РАН

Москва

Список литературы

  1. Гершуни Г.З., Жуховицкий Е.М., Непомнящий А.А. Устойчивость конвективных течений. М.: Физматлит, 1989. 320 с. ISBN 5-02-014004-X.
  2. Бердников Б.С., Гришков В.А. Ламинарно-турбулентный переход в свободном конвективном пограничном слое и теплоотдача вертикальных стенок // Труды 4-й РНКТ. 2006. Т. 3. Свободная конвекция. Тепломассообен при химических превращениях. С. 67–70.
  3. Простомолотов А.И., Верезуб Н.А. Механика процессов получения кристаллических материалов. М.: НИТУ “МИСиС”, 2023, ISBN 978-5-907560-57-4, 568 c.
  4. Wan D.C., Patnaik B.S., Wei G.W. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution // Numerical heat transfer, Part B. 2001. 40: Р. 199–228.
  5. Bingxin Zhao, Zhenfu Tian. High-resolution high-order upwind compact scheme-based numerical computation of the natural convection flows in a square cavity // Internat.Journal of Heat and Mass Transfer.2016. 98. P. 313–328.
  6. Trouette B. Lattice Boltzmann simulations of a time-dependent natural convection problem Computers-andmathematics-with-applications Volume 66, Issue 8, November 2013. P. 1360–1371.
  7. Oder J., Tisely I. Spectral Benchmark for Natural Convection Flow in a Tall Differentially Heated Cavity // 22nd International Conference Nuclear Energy for New Europe, September 9-12 BLED-SLOVENIA 2013. 227 p.
  8. Nader Ben Cheikh, Brahim Ben Beya & Taieb Lili. Benchmark Solution for Time-Dependent Natural Convection Flows with an Accelerated Full-Multigrid Method //Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology.2007. 52:2. P. 131–151. doi: 10.1080/10407790701347647
  9. Yong-Liang Feng, Shao-Long Guo, Wen-Quan Tao, Pierre Sagaut. Regularized thermal lattice Boltzmann method for natural convection with large temperature differences// Internat. Journal of Heat and Mass Transfer. 2018. 125. P. 1379–1391. 10.1016/j.ijheatmasstransfer.2018.05.051. hal-02114047.
  10. Поляков С.В., Чурбанов А.Г. Свободное программное обеспечение для математического моделирования // Препринты ИПМ им. М.В. Келдыша 2019, № 145. 32 с.
  11. Шеретов Ю.В. Динамика сплошных сред при пространственно-временном осреднении. М.: Ижевск, 2009.
  12. Елизарова Т.Г. Квазигазодинамические уравнения и методы расчета газодинамических течений. М.: Научный мир, 2007. Перевод Elizarova T.G., Quasi-Gas Dynamic equations // Springer, Berlin, 2009)
  13. Елизарова Т.Г., Шеретов Ю.В. Теоретическое и численное исследование квазигазодинамических и квазигидродинамических уравнений // Ж. вычисл. матем. и матем. физ.2001. T. 41. N 2. C. 239–255.
  14. Kraposhin M.V., Ryazanov D.A., Elizarova T.G. Numerical algorithm based on regularized equations for incompressible flow modeling and its implementation in OpenFOAM // Comp. Phys. Commun. 2022. V. 271. P. 108216.
  15. Кирюшина М.А., Елизарова Т.Г., Епихин А.С. Моделирование течения расплава в методе Чохральского в рамках открытого пакета OpenFOAM с применением квазигидродинамического алгоритма // Матем.моделирование. 2023. T. 35. N 8. C. 79–96.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024