Experimental data and analysis of some peculiarities of the reaction kinetics of ethyl acetate synthesis at 323.15 K

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The results of experimental investigation of the kinetics of the esterification reaction in the system acetic acid – ethanol – ethyl acetate – water at 323.15 K for reaction (stoichiometric) lines in different concentration regions are presented. The peculiarities of the appearance of different kinetic curves, the influence of relative amounts of acid and alcohol on the reaction rate have been considered. On the basis of the obtained data, the kinetic equations and the possibility of their application to describe the reaction under consideration have been analyzed.

作者简介

G. Misikov

St. Petersburg State University

198504, St. Petersburg, Russia

A. Samarov

St. Petersburg State University

198504, St. Petersburg, Russia

M. Trofimova

St. Petersburg State University

198504, St. Petersburg, Russia

A. Toikka

St. Petersburg State University

Email: a.toikka@spbu.ru
198504, St. Petersburg, Russia

参考

  1. Kabilan M., Paul P., Duraipandiyan V., Muthupandi M.J. // Nat. Pestic. Res. 2024. V. 10. 100090. doi: 10.1016/j.napere.2024.100090.
  2. Marino D.J. Ethyl Acetate. Encyclopedia of Toxicology. 2nd Edition / Chief Editor: Philip Wexler: Elsevier. 2005. P. 277–279. doi: 10.1016/B0-12-369400-0/00390-2.
  3. Li X., Wang M., Chu Y. et al. // Chem. Eng. J. 2024. V. 487. 150588. doi: 10.1016/j.cej.2024.150588.
  4. Supang W., Ngamprasertsith S., Sakdasri W., Sawangkeaw R. // J. Supercrit. Fluids. 2022. V. 186. 105586. doi: 10.1016/j.supflu.2022.105586.
  5. Malaika A., Ptaszyńska K., Morawa Eblagon K. et al. // Fuel. 2021. V. 304. Article 121381. doi: 10.1016/j.fuel.2021.121381.
  6. Jayant K., Gupta C., Seethamraju S., Mahajani S.M. // Sep. Purif. Technol. 2024. V. 331. 125650. doi: 10.1016/j.seppur.2023.125650.
  7. Ersingün D., Aldemir A. // Desalin. Water Treat. 2024. V. 317. 100117. doi: 10.1016/j.dwt.2024.100117.
  8. Chen Y., Zhang Q., Liu K. et al. // Process Saf. Environ. Prot. 2023. V. 171. P. 607. doi: 10.1016/j.psep.2023.01.057.
  9. Wang Z., Zhang Y., Zhang Z. et al. // Chin. J. Chem. Eng. 2023. V. 53. P. 63. doi: 10.1016/j.cjche.2022.02.012.
  10. Zhu M.H.., Feng Z.J.., Hua X.M. et al. // Microporous Mesoporous Mater. 2016. V. 233. P. 171. doi: 10.1016/j.micromeso.2016.01.038.
  11. Dawameh F., Elmutasim O., Gaber D. et al. // Mol. Catal. 2021. V. 501. Article 111371. doi: 10.1016/j.mcat.2020.111371.
  12. Merchant S.Q., Almohammad K.A., Al Bassam A.A., Ali S.H. // Fuel. 2013. V. 111. P. 140. doi: 10.1016/j.fuel.2013.04.016.
  13. Finger P.H., Osmari T.A., Costa J.M.C. et al. // Appl. Catal. A. 2020. V. 589. 117236. doi: 10.1016/j.apcata.2019.117236.
  14. Guliani D., Sobti A., Pal Toor A. // Mater. Today. Proc. 2021. V. 41. № 4. P. 805. doi: 10.1016/j.matpr.2020.08.751.
  15. Xu D., Ma H., Cheng F. // Mater. Res. Bull. 2014. V. 53. P. 15. doi: 10.1016/j.materresbull.2014.01.029.
  16. He R., Dong Y., Muhammad Y. et al. // Chem. Eng. Res. Des. 2018. V. 137. P. 235. doi: 10.1016/j.cherd.2018.07.020.
  17. Itoh N., Ishida J., Sato T., Hasegawa. Y. // Catal. Today. 2016. V. 268. P. 79. doi: 10.1016/j.cattod.2016.02.027.
  18. Liu Q., Shi J., Wang T. et al. // Chem. Eng. J. Adv. 2021. V. 6. 100088. doi: 10.1016/j.ceja.2021.100088.
  19. Lin Y.K., Nguyen V.H., Yu J.C.C. et al. // J. Taiwan Inst. Chem. Eng. 2017. V. 79. P. 23–30. doi: 10.1016/j.jtice.2017.06.031.
  20. Meng D., Dai Y., Xu Y. // Process Saf. Environ. Prot. 2020. V. 140. P. 14. doi: 10.1016/j.psep.2020.04.039
  21. Singh D., Gupta R.K., Kumar V. // Comput. Chem. Eng. 2015. V. 73. P. 70. doi: 10.1016/j.compchemeng.2014.11.007.
  22. Cheng H., Zhong J.1, Dai Y. et al. // J. Cleaner Product. 2023. V. 421. 138565. doi: 10.1016/j.jclepro.2023.138565
  23. Fernandez M.F., Barroso B., Meyer, X.M. // Comput. Aided Chem. Eng. 2012. V. 30. P. 787. doi: 10.1016/B978-0-444-59520-1.50016-6
  24. Brandt S., Horstmann S., Steinigeweg S., Gmehling J. // Fluid Phase Equilibria. 2014. V. 376. P. 48. doi: 10.1016/j.fluid.2014.05.031
  25. Chilev Ch., Simeonov E. // J. Chem. Techn. Metal. 2017. V. 52. Issue 3. P. 463.
  26. Arora S., Srivastava P. // Int. J. Sci. Res. 2014. V. 3. Issue 12. P. 2571.
  27. Ascani M., Sadowski G., Held Ch. // Molecules. 2023. V. 28. 1768. doi: 10.3390/molecules28041768
  28. Toikka M., Samarov A., Trofimova M. et al. // Fluid Phase Equilib. 2014. V. 373. P. 72. doi: 10.1016/j.fluid.2014.04.013
  29. Trofimova M., Sadaev A., Samarov A. et al. // Ibid. 2020. V. 503. 112321. doi: 10.1016/j.fluid.2019.112321.
  30. Trofimova M., Toikka M., Toikka A. // Ibid. 2012. V. 313. P. 46. doi: 10.1016/j.fluid.2011.09.035.
  31. Trofimova M., Samarov A., Misikov G., Zaripova S. // Russ. J. Gen. Chem. 2024. V. 94. P. S165. doi: 10.1134/S1070363224140172.
  32. Golikova A., Samarov A., Trofimova M. et al. // J. Solution Chem. 2017. V. 46. P. 374. doi: 10.1007/s10953-017-0583-1.
  33. Toikka A.M., Trofimova M.A., Toikka M.A. // Russ. Chem. Bull. 2012. V. 61. № 3. P. 662. doi: 10.1007/s11172-012-0097-3.
  34. Misikov G., Trofimova M., Prikhodko I. // Chemistry. 2023. V. 5. № 4. P. 2542. doi: 10.3390/chemistry5040165.
  35. Misikov G.K., Toikka M.A., Toikka A.M. // Russ. J. Phys. Chem. 2024. V. 98. P. 1981. doi: 10.1134/S0036024424701115.
  36. Toikka A.M., Misikov G. Kh., Volodina N.Y. et al. // Ibid. 2024. V. 98. P. 1478. doi: 10.1134/S003602442470047X.
  37. Kondepudi D., Prigogine I. Modern Thermodynamics: From Heat Engines to Dissipative Structures. Chichester, West Sussex, United Kingdom: ‎John Wiley & Sons, Ltd, 2015. 523 p.
  38. Prigogine I., Defay R. Chemical Thermodynamics. Harlow, UK: Longmans, Green and Co., 1954. 533 p.
  39. Первухин О.К. // Журн. физ. химии. 1989. Т. 63. № 8. С. 2067.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025