Introduction of cationizing agents in soft ionization processes of short-chain peptides: laser desorption and electrospraying

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A mass spectrometric study of ionization processes of short peptides of triglycine, alanylglutamine, and prolylleucine by electrospray ionization (ESI) and surface-activated laser desorption/ionization (SALDI) methods in the presence of copper sulfate crystalline hydrate is performed. It is shown that during ESI ionization, the presence of copper ions in the solution initiates the aggregation of peptide molecules with the formation of large associates of up to 7-8 peptide molecules. The influence of the nature of peptides on the nature of ionization processes is studied. At the same time, competitive cationization of peptide molecules by copper ions with the formation of an M+Cu+ ion occurs during ionization by SALDI method. Peptide fragmentation and copper cationization of decarboxylation products are also typical.

Texto integral

Acesso é fechado

Sobre autores

E. Kuznetsova

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: eskuznetsova8@yandex.ru
Rússia, Moscow, 119071

I. Pytskii

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: eskuznetsova8@yandex.ru
Rússia, Moscow, 119071

A. Buryak

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: eskuznetsova8@yandex.ru
Rússia, Moscow, 119071

Bibliografia

  1. Budimir N., Blais J.-Cl., Fournier F., Tabet J.-Cl. // Rapid Commun. Mass Spectrom. 2006. V. 20. P. 680. https://doi.org/10.1002/rcm.2363
  2. Chen Y., Chen H., Aleksandrov A., Orlando T.M. // J. Phys. Chem. C. 2008. V. 112. № 17. P. 6953. https://doi.org/10.1021/jp077002r
  3. Cohen L.H., Gusev A.I. // Anal. Bioanal. Chem. 2002. V. 373. P. 571. https://doi.org/10.1007/s00216-002-1321-z
  4. Karas M., Krüger R. // Chem. Rev. 2003. V. 103. № 2. P. 427. https://doi.org/10.1021/cr010376a
  5. Lin L., Weng C., Chen Q. // Nucl. Instrum. Methods Phys. Res. B. V. 414. № 1. P. 79.
  6. Chen Y., Chen H., Aleksandrov A., Orlando T.M. // J. Phys. Chem. C. 2008. V. 112. № 17. P. 6953. https://doi.org/10.1021/jp077002r
  7. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Colloid Journal. 2018. № 80. P. 427. https://doi.org/10.1134/S1061933X18040105
  8. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Protection of Metals and Physical Chemistry of Surfaces. 2020. № 56. P. 272. https://doi.org/10.1134/S2070205120020203
  9. Xinyao Ju, Shuzhen Cheng, Han Li et al. // Food Chemistry. 2022. V. 390. https://doi.org/10.1016/j.foodchem.2022.133146
  10. Iavorschi M., Lupăescu A., Darie-Ion L. et al. // Pharmaceuticals. 2022. V. 15(9). https://doi.org/10.3390/ph15091096

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural formulas of oligopeptides.

Baixar (165KB)
3. Fig. 2. ERI mass spectrum of triglycine with the addition of a solution of CuSO4 8H2O salt.

Baixar (263KB)
4. Fig. 3. ERI mass spectrum of alanyl glutamine with the addition of a solution of CuSO4 8H2O salt.

Baixar (347KB)
5. Fig. 4. ERI mass spectrum of alanylglutamine in the presence of a CuSO4 8H2O salt solution with a cluster distribution of ions.

Baixar (246KB)
6. Fig. 5. ERI mass spectrum of prolyl leucine with the addition of a solution of CuSO4 8H2O salt.

Baixar (322KB)
7. Fig. 6. SALDI mass spectrum of triglycine, alanyl glutamine and prolyl leucine with the addition of a solution of CuSO4 8H2O salt.

Baixar (530KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025