Thermodynamic Modeling of the Bi–Ga–Zn System
- Autores: Lysenko V.A.1
- 
							Afiliações: 
							- Faculty of Chemistry, Moscow State University
 
- Edição: Volume 97, Nº 1 (2023)
- Páginas: 139-143
- Seção: ХЕМОИНФОРМАТИКА И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.01.2023
- URL: https://ter-arkhiv.ru/0044-4537/article/view/668895
- DOI: https://doi.org/10.31857/S004445372301020X
- EDN: https://elibrary.ru/BCKJZI
- ID: 668895
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Experimental data are used to build a thermodynamic model for the liquid phase of the Bi–Ga–Zn system. The model and those of other phases are used to determine coordinates of the invariant points of the Bi–Ga–Zn system and the projection of its liquidus surface. The polythermal cross-section of the system’s phase diagram is calculated for compositions xBi/xZn = 1, along with the isothermal cross section at 573 K.
Palavras-chave
Sobre autores
V. Lysenko
Faculty of Chemistry, Moscow State University
							Autor responsável pela correspondência
							Email: vallys2@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
Bibliografia
- Wang Q., Cheng X., Li Y. et al. // J. Wuhan Univ. Technol. Mater. Sci. Edition 2019. V. 34. № 3. P. 676.
- Wang Q., Cheng X., Liu Z. et al. // Materials. 2020. V. 13. № 23. P. 5461.
- Lorenzin N., Abánades A. // Int. J. Hydrogen Energy. 2016. V. 41. № 17. P. 6990.
- Гусакова О.В., Шепелевич В.Г. // Журн. белорус. гос. универ. Эколог. 2020. № 4. С. 79.
- Gambino M., Bros J.-P. // J. Chim. Phys. 1980. V. 77. № 11–12. P. 1031.
- Girard C., Baret R., Miane J.-M. et al. // Ibid. 1980. V. 77. № 11–12. P. 1037.
- Minić D., Manasijević D., Živković D. et al. // Mater. Sci. Technol. 2011. V. 27. № 5. P. 884.
- Malakhov D.V. // Calphad. 2000. V. 24. № 1. P. 1.
- Vizdal J., Braga M.H., Kroupa A. et al. // Ibid. 2007. V. 31. № 4. P. 438.
- Dutkiewicz J., Moser Z., Zabdyr L. et al. // Bull. Alloy Ph. Diagr. 1990. V. 11. № 1. P. 77.
- Manasijević D., Minić D., Živković D. et al. // J. Phys. Chem. Solids. 2009. V. 70. № 9. P. 1267.
- Okamoto H. // J. Phase Equilib. Diff. 2015. V. 36. № 3. P. 292.
- Minić D., Premović M., Manasijević D. et al. // J. Alloys Compd. 2015. V. 646. P. 461.
- Terlicka S., Debski A., Gasior W., Debski R. // J. Chem. Thermodyn. 2016. V. 102. P. 341.
- Girard C., Bros J.P., Agren J., Kaufman L. // Calphad. 1985. V. 9. № 2. P. 129.
- Wang Z.C., Yu S.K., Sommer F. // J. Chim. Phys. Phys.-Chim. Biol. 1993. V. 90. P. 379.
- Dinsdale A.T. // Calphad. 1991. V. 15. № 4. P. 317.
- Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345.
- Лысенко В.А. // Журн. физ. химии. 2008. Т. 82. № 8. С. 1413.; Lysenko V.A. // Russ. J. Phys. Chem. A. 2008. V. 82. № 8. P. 1252.
- Vassiliev V.P., Lysenko V.A. // J. Alloys Compd. 2016. V. 681. P. 606.
- Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике. Т. 1. М.: Мир, 1986. 349 с.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







