SOCS1 gene mutations in patients with diffuse large B-cell lymphoma


Cite item

Full Text

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of diseases, which accounts for 30% of all non-Hodgkin lymphomas. Current molecular studies have confirmed that there are several DLBCL subtypes characterized by different cellular origin, cytogenetic profile, molecular genetic disorders, and different pathogenesis. Impaired JAK-STAT signaling is a part of the pathogenesis of various cancers, including DLBCL. The review deals with the molecular genetic aspects of the occurrence of DLBCL and the function of the SOCS1 gene that has been proven to be responsible for the development of several cancers. Mutations of this gene result from spontaneously impaired B-cell somatic hypermutation and they are frequently inactivating. The presence of point mutations in the functionally significant region of this gene in DLBCL could identify a group of patients with poor prognosis during standard chemotherapy.

References

  1. Kirken RA, Erwin RA, Wang L, Wang Y, Rui H, Farrar WL. Functional uncoupling of the Janus kinase 3-Stat5 pathway in malignant growth of human T cell leukemia virus type 1-transformed human T cells. J Immunol. 2000;165(9):5097-104.
  2. Leonard WJ. Cytokines and immunodeficiency diseases. Nat RevImmunol. 2001;1:200-208.
  3. Parrillas V, Martínez-Muñoz L, Holgado BL, Kumar A, Cascio G, Lucas P et al. Suppressor of cytokine signaling 1 blocks mitosis in human melanoma cells. Cell Mol Life Sci. 2013;70:545-558.
  4. Saelee P, Chuensumran U, Wongkham S, Chariyalertsak S, Tiwawech D, Petmitr S. Hypermethylation of suppressor of cytokine signaling 1 in hepatocellular carcinoma patients. Asian Pac J Cancer Prev. 2012;13(7):3489-3493.
  5. Inagaki-Ohara K, Kondo T, Ito M, Yoshimura A. SOCS, inflammation, and cancer. JAK-STAT. 2013;2(3):24053:1-10.
  6. Inagaki-Ohara K, Mayuzumi H, Kato S, Minokoshi Y, Otsubo T, Kawamura YI, Dohi T, Matsuzaki G, Yoshimura A. Enhancement of leptin receptor signaling by SOCS3 deficiency induces development of gastric tumors in mice. Oncogene. 2012;33:74-84.
  7. Inagaki-Ohara K, Sasaki A, Matsuzaki G, Ikeda T, Hotokezaka M, Chijiiwa K. Suppressor of cytokine signalling 1 in lymphocytes regulates the development of intestinal inflammation in mice. Gut. 2006;55:212-219.
  8. Ogata H, Chinen T, Yoshida T, Kinjyo I, Takaesu G, Shiraishi H. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. Oncogene. 2006;25:2520-2530.
  9. Ogata H, Kobayashi T, Chinen T, Takaki H, Sanada T, Minoda Y. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology. 2006; 131:179-193.
  10. Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H, Koga K. IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med. 2006;203:1391-1397.
  11. Yoshida T, Ogata H, Kamio M, Joo A, Shiraishi H, Tokunaga Y. SOCS1 is a suppressor of liver fibrosis and hepatitis-induced carcinogenesis. J Exp Med. 2004;199:1701-1707.
  12. Kamio M, Yoshida T, Ogata H, Douchi T, Nagata Y, Inoue M. SOCS1 inhibits HPV-E7-mediated transformation by inducing degradation of E7 protein. Oncogene. 2004;23:3107-3115.
  13. Hashimoto M, Ayada T, Kinjyo I, Hiwatashi K, Yoshida H, Okada Y. Silencing of SOCS1 in macrophages suppresses tumor development by enhancing antitumor inflammation. Cancer Sci. 2009;100:730-736.
  14. Goldsby RA, Kindt TJ. Immunology. 5th ed. 2003;285-286.
  15. Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа; 2010;752.
  16. Yoshimura A, Suzuki M, Sakaguchi R, Hanada T, Yasukawa H. SOCS, Inflammation, and Autoimmunity. Front Immunol. 2012;3:20.
  17. Kamura T, Sato S, Haque D, Liu L, Kaelin WG Jr, Conaway RC, Conaway JW. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 1998;12(24):3872-3881.
  18. Rottapel R, Ilangumaran S. The tumor suppressor activity of SOCS-1. Oncogene. 2002;21:4351-4362.
  19. Fukushima N, Sato N, Su GH, Hruban RH, Goggins M. Aberrant methylation of suppressor of cytokine signalling-1 (SOCS-1) gene in pancreatic ductal neoplasms. Br J Cancer. 2003;89:338-343.
  20. Galm O, Yoshikawa H, Esteller M, Osieka R, Herman JG. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood. 2003;101:2784-2788.
  21. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, Liu MF, Wang ED. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70:3119-3127.
  22. Melzner I, Bucur AJ, Bruderlein S, Dorsch K, Hasel C, Barth TF, Leithauser F, Moller P. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood. 2005;105:2535-2542.
  23. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, Taccioli C, Zanesi N, Alder H, Hagan JP, Munker R, Volinia S, Boccadoro M, Garzon R, Palumbo A, Aqeilan RI, Croce CM. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl AcadSci USA. 2008;105:12885-12890.
  24. Sutherland KD, Lindeman GJ, Choong DY, Wittlin S, Brentzell L, Phillips W, Campbell IG, Visvader JE. Differential hyper-methylation of SOCS genes in ovarian and breast carcinomas. Oncogene. 2004;23:7726-7733.
  25. Mansell A, Smith R, Doyle SL, Gray P, Fenner JE, Crack PJ. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol. 2006;7:148-155.
  26. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell. 2007;131:1124-1136.
  27. Strebovsky J, Walker P, Lang R, Dalpke AH. Suppressor of cytokine signaling 1 (SOCS1) limits NFkappaB signaling by decreasing p65 stability within the cell nucleus. FASEB J. 2011;25:863-874.
  28. Baetz A, Koelsche C, Strebovsky J, Heeg K, Dalpke AH. Identification of a nuclear localization signal in suppressor of cytokine signaling 1. FASEB J. 2008;22:4296-4305.
  29. Calabrese V, Mallette FA. SOCS1 links cytokine signaling to p53 and senescence. Mol Cell. 2009;36:754-767.
  30. Zhang J, Li H, Yu JP, Wang SE, Ren XB. Role of SOCS1 in tumor progression and therapeutic application. Int J Cancer. 2012; 130:1971-1980.
  31. Neuwirt H, Puhr M, Santer FR, Susani M, Doppler W, Marcias G. Suppressor of cytokine signaling (SOCS)-1 is expressed in human prostate cancer and exerts growth-inhibitory function through down-regulation of cyclins and cyclin-dependent kinases. Am J Pathol. 2009;174:1921-1930.
  32. Sasi W, Jiang WG, Sharma A, Mokbel K. Higher expression levels of SOCS 1,3,4,7 are associated with earlier tumour stage and better clinical outcome in human breast cancer. BMC Cancer. 2010;10:178.
  33. Lesinski GB, Zimmerer JM, Kreiner M, Trefry J, Bill MA, Young GS. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells. BMC Cancer. 2010;10:142.
  34. Melzner I, Weniger MA, Bucur AJ, Brüderlein S, Dorsch K, Hasel C. Biallelic deletion within 16p13.13 including SOCS-1 in Karpas1106P mediastinal B-cell lymphoma line is associated with delayed degradation of JAK2 protein. Int J Cancer. 2006; 118:1941-1944.
  35. Jost E, Dahl E, Maintz CE, Jousten P, Habets L. Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia. 2007;21:505-510.
  36. Sakamoto LH, Camargo DEB, Cajaiba M, Soares FA, Vettore AL. MT1G hypermethylation: a potential prognostic marker for hepatoblastoma. Pediatr Res. 2010;67:387-393.
  37. Liu S, Ren S, Howell P, Fodstad O, Riker AI. Identification of novel epigenetically modified genes in human melanoma via promoter methylation gene profiling. Pigment Cell Melanoma Res. 2008;21:545-558.
  38. Sutherland KD, Lindeman GJ, Choong DY, Wittlin S, Brentzell L, Phillips W. Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene. 2004;23:7726-7733.
  39. Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 2006;97:439-447.
  40. Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006;25:2679-2684.
  41. Melzner I, Bucur AJ, Brüderlein S, Dorsch K, Hasel C, Barth TF. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood. 2005;105:2535-2542.
  42. Raccurt M, Tam SP, Lau P, Mertani HC, Lambert A, Garcia-Caballero T. Suppressor of cytokine signalling gene expression is elevated in breast carcinoma. Br J Cancer. 2003;89:524-532.
  43. Li Z, Metze D, Nashan D, Müller-Tidow C, Serve HL, Poremba C. Expression of SOCS-1, suppressor of cytokine signalling-1, in human melanoma. J Invest Dermatol. 2004;123:737-745.
  44. Mottok A, Renne C, Seifert M, Oppermann E, Bechstein W, Hansmann ML. Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood. 2009;114:4503-4506.
  45. Schif B, Lennerz J, Kohler C, Bentink S. SOCS1 mutation subtypes predict divergent outcomes in diffuse large B-cell lymphoma (DLBCL) patients. Oncotarget. 2013;4:35-47.
  46. Alizadeh AA, Eisen MB, Davis RE, Ma C. Distinct types of diffuse large B-cell lymphoma identifiedby gene expression profiling. Nature. 2000;403:503-511.
  47. Hummel M, Bentink S, Berger H, Klapper W. A biologic definition of Burkitt‘s lymphoma from transcriptional and genomic profiling. N Engl JMed. 2006;354:2419-2430.
  48. Bentink S, Wessendorf S, Schwaenen C, Rosolowski M. Pathway activation patterns in diffuse large B-cell lymphomas. Leukemia. 2008;22:1746-1754.
  49. Monti S, Savage KJ, Kutok JL, Feuerhake F. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105:1851-1861.
  50. Паровичникова Е.Н., Клясова Г.А., Соколов А.Н., Троицкая В.В., Кохно А.В., Кузьмина Л.А., Шафоростова И.И., Рыжко В.В., Кравченко С.К., Бондаренко С.Н., Лапин В.А., Приступа А.С., Константинова Т.С., Загоскина Т.П., Ялыкомов И.В., Москов В.И., Анчукова Л.В., Капорская Т.С., Володичева Е.М., Капланов К.Л., Кондакова Е.В., Самойлова О.С., Гаврилова Л.В., Куликов С.М., Савченко В.Г. Первые результаты лечения острых миелоидных лейкозов взрослых по протоколу ОМЛ-01.10 Научно-исследовательской группы гематологических центров России. Терапевтический архив. 2012; 84(7):10-15.
  51. Гаврилина О.А., Габеева Н.Г., Морозова А.К., Сидорова А.А., Звонков Е.Е. Роль высокодозной химиотерапии и трансплантации аутологичных стволовых клеток крови у пациентов с диффузной В-крупноклеточной лимфомой. Терапевтический архив. 2013; 85(7):90-97.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies