Risk factors: microalbuminuria


Cite item

Full Text

About the authors

V N Khirmanov

References

  1. Viberti G, Pickup J. С, Bilous R. W. et al. Correction of exerciseinduced microalbuminuria in insulin-dependent diabetics after 3 weeks of subcutaneous insulin infusion. Diabetes 1981; 30 (10): 818-823.
  2. Cameron J. S. Milk or albumin? The history of proteinuria before Richard Bright. Nephrol. Dial. Transplant. 2003; 18 (7): 1281-1285.
  3. Houlihan С A., Tsalamandris C, Akdeniz A., Jerums G. Albu min to creatinine ratio: a screening test with limitations. Am.J. Kidney Dis. 2002; 39 (6): 1183-1189.
  4. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am. J. Kidney Dis. 2002; 39 (2, suppl. 1): Sl- S266.
  5. Титов В. Н., Тарасов А. В. Микроальбуминурия: патофизиология, диагностическое значение и методы исследования. Тер. арх. 1988; 60 (1): 134-140.
  6. Jones С. A., Francis М. Е., Eberhardt M. S. et al. Microalbuminuria in the US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 2002; 39 (3): 445-459.
  7. Tomura S., Kawada K., Saito K. et al. Prevalence of microalbuminuria and relationship to the risk of cardiovascular disease in the Japanese population. Am. J. Nephrol. 1999; 19 (1): 13-20.
  8. D 'Amico G., Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003; 63 (3): 809-825.
  9. Smithies O. Why the kidney glomerulus does not clog: A gel permeation/diffusion hypothesis of renal function. Proc. Natl. Acad. Sci. USA. 2003; 100 (7): 4108-4113.
  10. Dixon R., Brunskill N. J. Activation of mitogenic pathways by albumin in kidney proximal tubule epithelial cells: implications for the pathophysiology of proteinuric states. J. Am. Soc. Ne- phrol. 1999; 10 (7): 1487-1497.
  11. Eddy A. A. Proteinuria and interstitial injury. Nephrol. Dial. Transplant. 2004; 19 (2): 277-281.
  12. Palaniappan L., Carnethon M., Fortmann S. P. Association between microalbuminuria and the metabolic syndrome: NHANES HI. Am. J. Hypertens. 2003; 16 (11, pt 1): 952- 958.
  13. Knight E. L., Kramer H. M., Curhan G. С High-normal blood pressure and microalbuminuria. Am. J. Kidney Dis. 2003; 41 (3): 588-595.
  14. Vestbo E., Damsgaard E. G., Mogensen С. Е. The relationship between microalbuminuria in first generation diabetic and non-diabetic subjects and microalbuminuria and hypertension in the second generation (a population based study). Nephrol. Dial. Transplant. 1997; 12 (suppl. 2): 32-36.
  15. Pedrinelli R., Dell'Omo G., Penno G. et al. Microalbuminuria and pulse pressure in hypertensive and atherosclerotic men. Hypertension 2000; 35 (1, pt 1): 48-54.
  16. Петрищев Н. Н., Власов Т. Д. Физиология и патофизиология эндотелия. В кн.: Петрищева Н. Н. (ред.) Дисфункция эндотелия. Причины, механизмы, фармакологическая коррекция. СПб: Изд-во СПбГМУ; 2003. 4-38.
  17. Dedkova E. N., Л X, Wang Y. G. et al. Signaling mechanisms that mediate nitric oxide production induced by acetylcholine exposure and withdrawal in cat atrial myocytes. Circ. Res. 2003; 93 (12): 1233-1240.
  18. Bigazzi R., Bianchi S., Baldari D. et al. Microalbuminuria in saltsensitive patients. A marker for renal and cardiovascular risk factors. Hypertension 1994; 23 (2): 195-199.
  19. Pontremoli R., Sofia A., Ravera M. et al. Prevalence and clinical correlates of microalbuminuria in essential hypertension. The MAGIC Study. Hypertension 1997; 30 (5): 1135-1143.
  20. Malatino L. S., Bellanuova I., Cataliotti A. et al. Renal endothelin-1 is linked to changes in urinary salt and volume in essential hypertension. J. Nephrol. 2000; 13 (3): 178-184.
  21. Wang D., Chen Y., Chabrashvili T. et al. Role of oxidative stress in endothelial dysfunction and enhanced responses to angiotensin II of afferent arterioles from rabbits infused with angiotensin II. J. Am. Soc. Nephrol. 2003; 14 (11): 2783- 2789.
  22. DiBona G. F. Renal neural mechanisms in salt-sensitive hypertension. Blood Press. 1995; 2 (suppl.): 81-87.
  23. Hall J. E. The kidney, hypertension, and obesity. Hypertension 2003; 41 (3, pt 2): 625-633.
  24. Toft I., Bonaa К. Н., Eikrem J. et al. Microalbuminuria in hypertension is not a determinant of insulin resistance. Kidney Int. 2002; 61 (4): 1445-1452.
  25. Pedrinelli R., Dell'Onto G, Penno G. et al. Microalbuminuria, a parameter independent of metabolic influences in hypertensive men. J. Hypertens. 2003; 21 (6): 1163-1169.
  26. Liese A. D., Hense H. W., Brown A. A. et al. Microalbuminuria, central adiposity and hypertension in the nondiabetic urban population of the MONICA Augsburg survey 1994/95. J. Hum. Hypertens. 2001; 15 (11): 799-804.
  27. Kambham N, Markowitz G. S., Valeri A. M. et al. Obesityrelated glomerulopathy: an emerging epidemic. Kidney Int. 2001; 59 (4): 1498-1509.
  28. Ribstein J., du Cailar G., Mimran A. Combined renal effects of overweight and hypertension. Hypertension 1995; 26 (4): 605- 610.
  29. Chagnac A., Weinstein Т., Herman M. et al. The effects of weight loss on renal function in patients with severe obesity. J.Am. Soc. Nephrol. 2003; 14 (6): 1480-1486.
  30. Pedrinelli R., Dell'Omo G., Penno G, Mariani M. Non-diabetic microalbuminuria, endothelial dysfunction and cardiovascular disease. Vase. Med. 2001; 6 (4): 257-264.
  31. Caballero A. E. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes. Res. 2003; 11 (11): 1278-1289.
  32. Wiecek A., Kokot F., Chudek J., Adamczak M. The adipose tissue a novel endocrine organ of interest to the nephrologist. Nephrol. Dial. Transplant. 2002; 17 (2): 191-195.
  33. Ridker P. M., Buring J. E., Cook N. R., Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 2003; 107 (3): 391-397.
  34. Sniveling E. M., Hillege H. L., Bakker S. J. et al. C-reactive protein and microalbuminuria differ in their associations with various domains of vascular disease. Atherosclerosis 2004; 172 (1): 107-114.
  35. Nishida Y., Yorioka N, Oda H., Yamakido M. Effect of lipoproteins on cultured human mesangial cells. Am. J. Kidney Dis. 1997; 29 (6): 919-930.
  36. Kamanna V. S., Roh D. D., Kirschenbaum M. A. Hyperlipidemia and kidney disease: concepts derived from histopathology and cell biology of the glomerulus. Histol. Histopathol. 1998; 13 (1): 169-179.
  37. Moorhead J. F., Chan M. K., El-Nahas M., Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulointerstitial disease. Lancet 1982; 2 (8311): 1309-1311.
  38. Crook E. D., Thallapureddy A., Migdal S. et al. Lipid abnormalities and renal disease: is dyslipidemia a predictor of progression of renal disease? Am. J. Med. Sci. 2003; 325 (6): 340-348.
  39. Arid M., Brown J., Williams M. et al. Fatty acids carried on albumin modulate proximal tubular cell fibronectin production: a role for protein kinase С Nephrol. Dial. Transplant. 2002' 17(10): 1751-1757.
  40. Rose H., Conventz M., Fischer Y. et al. Long-chain fatty acidbinding to albumin: re-evaluation with directly measured concentrations. Biochim. Biophys. Acta 1994; 1215 (3): 321-326.
  41. Kramer-Guth A., Quaschning Т., Pavenstadt H. et al. Uptake and metabolism of lipoproteins from patients with diabetes mellitus type II by glomerular epithelial cells. Nephrol. Dial. Transplant. 1997; 12 (7): 1336-1343.
  42. Vogt L., Laverman G. D., Dullaart R. P., Navis G. Lipid management in the proteinuric patient: do not overlook the importance of proteinuria reduction. Nephrol. Dial. Transplant. 2004; 19 (1): 5-8.
  43. Sinzinger H., Kritz H., Furberg С D. Atorvastatin reduces microalbuminuria in patients with familial hypercholesterolemia and normal glucose tolerance. Med. Sci. Monit. 2003; 9 (7): 188-192.
  44. Meigs J. В., D 'Agostino R. В., Nathan D. M. et al. Longitudinal association of glycemia and microalbuminuria: the Framingham Offspring Study. Diabetes Care 2002; 25 (6): 977-983.
  45. Дедов И. И., Шестакова М. В. Диабетическая нефропатия. М.: Универсум Паблишинг; 2000.
  46. Wendt Т., Tanji N, Guo J. et al. Glucose glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy. J. Am. Soc. Nephrol. 2003; 14 (5): 1383-1395.
  47. Watanabe H., Sanada H., Shigetomi S. et al. Urinary excretion of type IV collagen as a specific indicator of the progression of diabetic nephropathy. Nephron 2000; 86 (1): 27-35.
  48. Katz A., Van-Dijk D. J., Aingorn H. et al. Involvement of hu man heparanase in the pathogenesis of diabetic nephropathy Isr. Med. Assoc. J. 2002; 4 (11): 996-1002.
  49. Cohen M. P., Masson N, Hud E. et al. Inhibiting albumin glycation ameliorates diabetic nephropathy in the db/db mouse Exp. Nephrol. 2000; 8 (3): 135-143.
  50. Aronson D., Rayfield E. J. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc. Diabetol. 2002; 1 (1): 1-10.
  51. Langham R. G, Kelly D. J., Cox A. J. et al. Proteinuria and theexpression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia 2002; 45 (11): 1572-1576.
  52. Patari A., Forsblom C, Havana M. et al. Nephrinuria in diabetic nephropathy of type 1 diabetes. Diabetes 2003; 52 (12): 2969-2974.
  53. Лебедева М. В., Балкаров И. М., Лукичева Т. И. и др. Клинико-диагностическое значение определения микроальбуминурии и активности канальцевого фермента N-ацетил- p-D-глюкозаминидазы (НАГ) у лиц с гиперурикозурией. Тер. арх. 1998; 70 (4): 48-54.
  54. Во S., Cavallo-Perin P., Gentile L. et al. Hypouricemia and hyperuricemia in type 2 diabetes: two different phenotypes.Eur. J. Clin. Invest. 2001; 31 (4): 318-321.
  55. Nakagawa Т., Mazzali M., Kang D. H. et al. Hyperuricemia causes glomerular hypertrophy in the rat. Am. J. Nephrol. 2003; 23 (1): 2-7.
  56. Mazzali M., Kanellis J., Han L. et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am. J. Physiol. Renal Physiol. 2002; 282 (6): F991-F997.
  57. Sanchez-Lozada L. G., Tapia E., Avila-Casado С et al. Mild hyperuricemia induces glomerular hypertension in normal rate.Am. J. Physiol. Renal Physiol. 2002; 283 (5): F1105-F1110.
  58. Kanellis J., Watanabe S., Li J. H. et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension 2003; 41 (6): 1287-1293.
  59. Hoogeveen E. K., Kostense P. J., Jager A. et al. Serum homocysteine level and protein intake are related to risk of microalbuminuria: the Hoorn Study. Kidney Int. 1998; 54 (1): 203- 209.
  60. Мухин Н. А., Моисеев С. В., Фомин В. В. Гипергомоцистеинемия как фактор риска сердечно-сосудистых заболеваний. Клин. мед. 2001; 79 (6): 7-14.
  61. Fischer P. A., Dominguez G. N., Cuniberti L. A. et al. Hyperhomocysteinemia induces renal hemodynamic dysfunction: is nitric oxide involved? J. Am. Soc. Nephrol. 2003; 14 (3): 653- 660.
  62. Meigs J. В., Jacques P. F., Selhub J. et al. Fasting plasma ho mocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabetes Care 2001; 24 (8): 1403-1410.
  63. Virdis A., Ghiadoni L., Salvetti G. et al. Hyperhomocyst(e)inemia: is this a novel risk factor in hypertension? J. Nephrol. 2002; 15 (4): 414-421.
  64. Marre M., Lievre M., Vasmant D. et al. Determinants of elevated urinary albumin in the 4,937 type 2 diabetic subjects recruited for the DIABHYCAR Study in Western Europe and North Africa. Diabetes Care 2000; 23 (suppl. 2): B40-B48.
  65. Orth S. R. Effects of smoking on systemic and intrarenal hemodynamics: influence on renal function. J. Am. Soc. Nephrol. 2004; 15 (suppl. 1): S58-S63.
  66. O'Callaghan P., Meleady R., Fitzgerald Т., Graham I. Smoking and plasma homocysteine. Eur. Heart J. 2002; 23 (20): 1580-1586.
  67. Mimran A., Ribstein J., DuCailar G. Is microalbuminuria a marker of early intrarenal vascular dysfunction in essential hypertension? Hypertension 1994; 23 (6, pt 2): 1018-1021.
  68. Gerstein H. C, Mann J. F., Yi Q. et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. J. A. M. A. 2001; 286 (4): 421-426.
  69. Yuyun M. F, Khaw К. Т., Luben R. et al. A prospective study of microalbuminuria and incident coronary heart disease and its prognostic significance in a British population: The EPIC- Norfolk Study. Am. J. Epidemiol. 2004; 159 (3): 284-293.
  70. Berton G., Cordiano R., Palmieri R. et al. Microalbuminuria during acute myocardial infarction; a strong predictor for 1 year mortality. Eur. Heart J. 2001; 22 (16): 1466-1475.
  71. Wachtell K., Ibsen H., Olsen M. H. et al. Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann. Intern. Med. 2003; 139 (11): 901-906.
  72. Mann J. F. E., Gerstein H. C, Qi-Long Y. et al. Development of renal disease in people at high cardiovascular risk: results of the HOPE randomized trial. J. Am. Soc. Nephrol. 2003; 14 (3): 641-647.
  73. Yuyun M. F., Khaw К. Т., Luben R. et al. Microalbuminuria and stroke in a British population: the European Prospective. Investigation into Cancer in Norfolk (EPIC-Norfolk) popula- tion study. J. Intern. Med. 2004; 255 (2): 247-256.
  74. Hillege H. L., Fidler V., Diercks G. F. et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002; 106 (14): 1777- 1782.
  75. Diercks G. K, van Boven A. J., Hillege H. L. et al. Microalbuminuria is independently associated with ischaemic electrocardiographic abnormalities in a large non-diabetic population.Eur. Heart J. 2000; 21 (23): 1922-1927.
  76. Romundstad S., Holmen J., Kvenild K. et al. Microalbuminuria and all-cause mortality in 2,089 apparently healthy individuals: a 4.4-year follow-up study. Am. J. Kidney Dis. 2003; 42 (3): 466-473.
  77. Verhave J. C, Hillege H L., Burgerhof J. G. et al. Cardiovascular risk factors are differently associated with urinary albumin excretion in men and women. J. Am. Soc. Nephrol. 2003; 14 (5): 1330-1335.
  78. Gorgets W. J., van der GraafY., Hjemdahl P. et al. Urinary excretions of high molecular weight beta-thromboglobulin and albumin are independently associated with coronary heart dis ease in women, a nested case-control study of middleaged women in the Diagnostisch Onderzoek Mammacarcinoom (DOM) Cohort, Utrecht, Netherlands. Am. J. Epidemiol. 1995; 142(11): 1157-1164.
  79. Roest M., Banga J. D., Janssen W. M. et al. Excessive urinary albumin levels are associated with future cardiovascular mortality in postmenopausal women. Circulation 2001; 103 (25): 3057-3061.
  80. Мухин Н. А., Моисеев В. С. Кардиоренальные соотношения и риск сердечно-сосудистых заболеваний. Вестн. РАМН 2003; 11:50-55.
  81. Nathan D. M., Lachin J., Geary P. et al. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. N. Engl. J. Med. 2003; 348 (23): 2294-2303.
  82. Haffner S. M., Greenberg A. S., Weston W. M. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106 (6): 679-684.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2004 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Novij Zykovskij proezd, 3, 40, Moscow, 125167

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies