Calcification and atherosclerosis of the coronary arteries

Cover Page

Cite item

Full Text

Abstract

Calcification is a very common phenomenon in the coronary arteries, which is part of the atherosclerotic process, and the degree of calcification can predict clinical outcomes in patients at high risk of coronary events. Both the degree of calcification and the patterns of its distribution are of prognostic importance, but the relationship of coronary artery calcification with atherosclerotic plaque instability is extremely complex and not fully understood. This article is devoted to the study of calcification markers and their influence on the development of atherosclerotic foci.

Full Text

ГМК – гладкомышечные клетки

ИБС – ишемическая болезнь сердца

КА – коронарные артерии

ОК – остеокальцин

ОКС – острый коронарный синдром

ОП – остеопонтин

ОПГ – остеопротегерин

BMP – костные морфогенетические белки

В последнее время проблема кальциноза коронарных артерий (КА) стала одной из приоритетных в кардиологии. Кальцификация является весьма распространенным явлением в КА. Так, F. Ulusoy и соавт. (2015 г.), исследовав 410 пациентов с атипичной болью в груди и без ранее выявленной ишемической болезни сердца (ИБС), указали, что кальциноз является частью атеросклеротического процесса, в нормальном сосуде кальциноз отсутствует. Степень кальцификации может предсказать клинические исходы у пациентов с высоким риском коронарных событий [1]. P. Genereux и соавт. (2014 г.), исследовав 6855 пациентов с острым коронарным синдромом (ОКС), у которых выполнено чрескожное коронарное вмешательство, установили, что частота смерти, тромбоза стента и реваскуляризации миокарда в течение 1 года после ОКС значительно выше у пациентов с умеренной и тяжелой кальцификацией КА [2].

Исследования показывают, что в целом микрокальцификация чаще связана с нестабильными бляшками [3], а обширные кальцификации – в большей степени со стабильными бляшками [4, 5]. S. Puchner и соавт. (2018 г.), исследовав 260 пациентов с ОКС и без, пришли к выводу, что общий, но не локальный коронарный кальций является маркером риска ОКС. Локальная обширная кальцификация высокой плотности представляет более стабильную стадию атеросклеротического очага, в то время как нестабильные бляшки характеризуются меньшим количеством кальция [6]. Однако связь кальцификации КА с нестабильностью атеросклеротической бляшки чрезвычайно сложна и не до конца изучена.

Самой ранней формой кальциноза КА является микрокальцификация, наблюдаемая при поражениях с патологическим утолщением интимы, размером от 0,5 до 15,0 мкм [7, 8]. В пределах липидного пула ранняя микрокальцификация, как полагают, происходит из-за апоптоза сосудистых гладкомышечных клеток (ГМК) [8, 9] или может быть связана с матричными везикулами, обогащенными кальцийсвязывающими белками [10], которые высвобождаются клетками внутри бляшки. Такие агрегации кальцинированных матричных везикул обнаруживаются в атеромах человека [11, 12]. Апоптоз ГМК приводит к тонким микрокальцификациям, в то время как апоптотические тела, высвобождаемые во время гибели макрофагов [12], имеют относительно более крупный вид. Эти кальциевые отложения обычно видны в более глубоких областях некротического ядра, близко к внутренней эластичной мембране. Микрокальцификаты со временем сливаются в большие массы, образуя более крупные кальцификаты. В некротическом ядре кальцификация прогрессирует и распространяется от внешнего края некротического ядра в богатую коллагеном матрицу, которая охватывает ядро. Дальнейшее развитие кальцификации приводит к кальцинированным бляшкам с участием ГМК и коллагеновой матрицы независимо от некротического ядра.

Хотя точный механизм, посредством которого микрокальцификация вносит вклад в уязвимость бляшек, еще предстоит выяснить, исследования показывают, что наличие микрокальцификации в фиброзной крышке атеромы может усиливать механические напряжения на поверхности фиброзной бляшки, приводя к разрыву бляшки [7, 13].

Сосудистая кальцификация – это сложный процесс, который имеет общие механизмы с нормальной кальцификацией костей, включая экспрессию основных проостеогенных факторов, таких как остеокальцин (ОК), остеопротегерин (ОПГ), остеопонтин (ОП) и костные морфогенетические белки (BMP)-2 и 4. Исследования показывают, что компонентами сосудистой кальцификации являются соли кальция, фосфаты, ОП, остеонектин, ОПГ, ОК, коллаген 1-го типа и другие соединения, характерные для костной ткани [14–17]. Так, исследования P. Ciceri и соавт. (2016 г.) показали, что остеонектин постоянно присутствует в сосудистых ГМК и его экспрессия увеличивается при прогрессировании кальцификации [18].

Высокие концентрации ОПГ и ОП могут быть причиной ряда изменений в атеросклеротической бляшке, способствующих развитию нестабильности бляшки. Оба белка связаны с декальцификацией артерий, что может способствовать разрыву бляшек [19–21]. Показано, что ОП является хемотаксическим для воспалительных клеток, тем самым способствуя инфильтрации макрофагов и, как следствие, высвобождению протеинолитических ферментов [22]. ОП обнаружен в кальцифицированных атеросклеротических бляшках у пациентов с ИБС, что сопровождалось повышением его концентрации в сыворотке крови [23]. Кроме того, установлена ассоциация между содержанием ОП, с одной стороны, и жесткостью сосудистой стенки и кальцификацией атеромы – с другой [24, 25].

Механизм, посредством которого ОПГ регулирует кальцификацию артерий, мало изучен. Показано, что ОПГ, участвующий в процессе резорбции костной ткани, модулирует высвобождение разрушающих матрикс ферментов, таких как катепсины, и, следовательно, может также оказывать важное влияние на стабильность бляшки [26]. Два модулятора остеокластогенеза (ОПГ и его лиганд) присутствовали в атеросклеротической стенке сосуда и на ранних стадиях атеросклеротических поражений. При прогрессирующих кальцифицированных поражениях ОПГ присутствовал в кальцификатах, тогда как лиганд ОПГ (л-ОПГ) присутствовал только во внеклеточном матриксе, окружающем отложения кальция. Наблюдаемая экспрессия как ОПГ, так и л-ОПГ во время атерогенеза может указывать на регуляторную роль этих белков не только в остеокластогенезе, но и в атеросклеротической кальцификации [27]. О.Л. Барбараш и соавт. (2015 г.), изучая пациентов с ИБС, указали, что выраженный кальциноз КА значимо ассоциируется с более низкими уровнями ОПГ и катепсина К [28]. Расширение знаний о действии ОПГ на артериальную стенку позволит понять его клиническое и терапевтическое значение при атеросклерозе.

По мере формирования атеросклеротического очага наблюдается дифференциальная экспрессия регуляторных белков костного матрикса в бляшках человека. Исследования C. Dhore и соавт. (2001 г.) показали наличие ОК, матричного белка Gla и костного сиалопротеина на всех стадиях развития атеросклеротического очага, что свидетельствует о постоянном ингибировании кальцификации в стенке атеросклеротического сосуда. По мере увеличения кальцификации в атеросклеротических бляшках повышалась экспрессия BMP-2, BMP-4, ОП и остеонектина. Причем ОК, матричный белок Gla и костный сиалопротеин присутствовали как на ранних, так и на поздних стадиях поражения, тогда как BMP-2, BMP-4, ОП и остеонектин проявляли свою активность только в «запущенных» фиброкальцинированных бляшках, имеющих обогащенные коллагеном и кальцинированные участки и в очагах с признаками хондрогенных и остеогенных образований [27]. Кроме того, обширная микрокальцификация с повышенной экспрессией маркеров кальцификации, таких как ОК и BMP-2, наблюдалась у пациентов с ИБС. Несмотря на то, что сосудистые ГМК могут подвергаться остеогенной трансформации в остеобластоподобные клетки, фактическое образование костной ткани внутри КА встречается нечасто [29].

Исследования показывают, что процесс сосудистой кальцификации тесно связан с хроническим воспалением [30]. Кальцификация начинается в областях воспаления, где наблюдается локальное уменьшение коллагеновых волокон. Макрофаги, лимфоциты проникают в бляшки и выделяют цитокины, которые регулируют кальцификацию [31]. Исследование, в котором принимали участие 200 пациентов с подозрением на ИБС, показало связь уровня интерлейкина-37 с высоким уровнем коронарного кальция, что может быть связано с активацией воспаления и другими соответствующими факторами, такими как ОПГ или С-реактивный белок [32].

W. Zheng и соавт. (2008 г.), изучая уровни провоспалительных биомаркеров и медиаторов образования костной ткани в фиброзной покрышке и области плеча некальцифицированной и кальцифицированной бляшек сонной артерии, показали, что уровни моноцитарного хемотаксического фактора-1 и интерлейкина-8 выше в некальцифицированных бляшках в сравнении с кальцифицированными бляшками. Содержание BMP-6 и белка ОК выше в кальцинированных бляшках по сравнению с некальцинированными бляшками. Полученные данные свидетельствуют о том, что по мере усиления кальцификации в атеросклеротических бляшках наблюдается снижение воспаления [33].

Поскольку кальцификация сосудов значительно влияет на заболеваемость и смертность у пациентов с коронарным атеросклерозом, лучшее понимание ее индукции и развития проложит путь к разработке новых терапевтических стратегий, направленных на улучшение качества и увеличение продолжительности жизни.

×

About the authors

Elena V. Kashtanova

Research Institute of Internal and Preventive Medicine – branch of the Federal Research Center Institute of Cytology and Genetics

Author for correspondence.
Email: elekastanova@yandex.ru
ORCID iD: 0000-0003-2268-4186

д.б.н., зав. лаб. клинических, биохимических и гормональных исследований терапевтических заболеваний

Russian Federation, Novosibirsk

Yana V. Polonskaya

Research Institute of Internal and Preventive Medicine – branch of the Federal Research Center Institute of Cytology and Genetics

Email: elekastanova@yandex.ru
ORCID iD: 0000-0002-3538-0280

д.б.н., ст. науч. сотр. лаб. клинических, биохимических и гормональных исследований терапевтических заболеваний

Russian Federation, Novosibirsk

Yulia I. Ragino

Research Institute of Internal and Preventive Medicine – branch of the Federal Research Center Institute of Cytology and Genetics

Email: elekastanova@yandex.ru
ORCID iD: 0000-0002-4936-8362

чл.-кор. РАН, д.м.н., проф., врио рук.

Russian Federation, Novosibirsk

References

  1. Ulusoy FR, Yolcu M, Ipek E, et al. Coronary artery disease risk factors, coronary artery calcification and coronary bypass surgery. Clin Diagn Res. 2015;9(5):OC06-10. doi: 10.7860/JCDR/2015/12081.5989
  2. Genereux P, Madhavan MV, Mintz GS, et al. Ischemic Outcomes After Coronary Intervention of Calcified Vessels in Acute Coronary Syndromes Pooled Analysis From the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) and ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) Trials. JACC. 2014;63(18):1845-54. doi: 10.1016/j.jacc.2014.01.034.4
  3. Ehara S, Kobayashi Y, Yoshiyama M, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110(22):3424-9. doi: 10.1161/01.cir.0000148131.4142 5.e9
  4. Inaba M, Ueda M. Vascular Calcification – Pathological Mechanism and Clinical Application. The significance of arterial calcification in unstable plaques. Clin Calcium. 2015;25(5):679-86. doi: CliCa1505679686
  5. Holzapfel GA, Mulvihill JJ, Cunnane EM, Walsh MT. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech. 2014;47(4):859-69. doi: 10.1016/j.jbiomech.2014.01.011
  6. Puchner SB, Mayrhofer T, Park J, et al. Differences in the association of total versus local coronary artery calcium with acute coronary syndrome and culprit lesions in patients with acute chest pain: The coronary calcium paradox. Atherosclerosis. 2018;274:251-7. doi: 10.1016/j.atherosclerosis.2018.04.017
  7. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA. 2006;103:14678-83. doi: 10.1073/pnas.0606310103
  8. Kelly-Arnold A, Maldonado N, Laudier D, et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci USA. 2013;110(26):10741-6. doi: 10.1073/pnas.1308814110
  9. Kapustin AN, Shanahan CM. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles. Trends Cardiovasc Med. 2012;22(5):133-7. doi: 10.1016/j.tcm.2012.07.009
  10. Wu LN, Genge BR, Lloyd GC, Wuthier RE. Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicle proteins and different types of collagen. J Biol Chem. 1991;266(2):1195-203.
  11. Bobryshev YV, Killingsworth MC, Huynh TG, et al. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin? Basic Res Cardiol. 2007;102:133-43. doi: 10.1007/s00395-006-0637-9
  12. New SE, Goettsch C, Aikawa M, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113(1):72-7. doi: 10.1161/CIRCRESAHA.113.301036
  13. Maldonado N, Kelly-Arnold A, Vengrenyuk Y, et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am J Physiol Heart Circ Physiol. 2012;303(5):H619-28. doi: 10.1152/ajpheart.00036.2012
  14. Полонская Я.В., Каштанова Е.В., Мурашов И.С. и др. Ассоциации остеокальцина, остеопротегерина и кальцитонина с воспалительными биомаркерами в атеросклеротических бляшках коронарных артерий. Бюл. эксперим. биологии и медицины. 2016;162(12):691-4 [Polonskaya YaV, Kashtanova EV, Murashov IS, et al. Associations of osteocalcin, osteoprotegerin and calcitonin with biomarkers in atherosclerotic plaques of coronary arteries. Bulletin of Experimental Biology and Medicine. 2016;162(12):691-4 (In Russ.)].
  15. Roijers RB, Debernardi N, Cleutjens JP, et al. Microcalcifications in early intimal lesions of atherosclerotic human coronary arteries. Am J Pathol. 2011;178(6):2879-87. doi: 10.1016/j.ajpath.2011.02.004
  16. Qiao JH, Mishra V, Fishbein MC, et al. Multinucleated giant cells in atherosclerotic plaques of human carotid arteries: Identification of osteoclast-like cells and their specific proteins in artery wall. Exp Mol Pathol. 2015;99(3):654-62. doi: 10.1016/j.yexmp.2015.11.010
  17. Higgins CL, Isbilir S, Basto P, et al. Distribution of alkaline phosphate, osteopontin, RANK ligand and osteoprotogerin in calcified human carotid atheroma. Protein J. 2015;34(5):315-28. doi: 10.1007/s10930-015-9620-3
  18. Ciceri P, Elli F, Cappelletti L, et al. Osteonectin (SPARC) Expression in Vascular Calcification: In Vitro and Ex Vivo Studies. Calcif Tissue Int. 2016;99(5):472-80. doi: 10.1007/s00223-016-0167-x
  19. Golledge J, McCann M, Mangan S, et al. Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis. Stroke. 2004;35(7):1636-41. doi: 10.1161/01.STR.0000129790.00318.a3
  20. Steitz SA, Speer MY, McKee MD, et al. Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol. 2002;161(6):2035-46. doi: 10.1016/S0002-9440(10)64482-3
  21. Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin. Paracrine regulators of bone metabolism and vascular function. ArteriosclerThrombVasc Biol. 2002;22(4):549-53. doi: 10.1161/01.atv.0000012303.37971.da
  22. Gravallese EM. Osteopontin: a bridge between bone and the immune system. J Clin Invest. 2003;112(2):147-9. doi: 10.1172/JCI19190
  23. Ohmori R, Momiyama Y, Taniguchi H, et al. Plasma osteopontin levels are associated with the presence and extent of coronary artery disease. Atherosclerosis. 2003;170(2):333-7. doi: 10.1016/s0021-9150(03)00298-3
  24. Kerr PG, Guerin AP. Аrterial calcification and stiffness in chronic kidney disease. СЕРР. 2007;34(7):683-7. doi: 10.1111/j.1440-1681.2007.046 60.x
  25. Wallin R, Wajih N, Greenwood GT, Sane DC. Arterial calcification: A review of mechanisms, animal models, and the prospects for therapy. Med Res Rev. 2001;21(4):274-301. doi: 10.1002/med.1010
  26. Wittrant Y, Couillaud S, Theoleyre S, et al. Osteoprotegerin differentially regulates protease expression in osteoclast cultures. Biochem Biophys Res Commun. 2002;293(1):38-44. doi: 10.1016/S0006-291X(02)00179-1
  27. Dhore CR, Cleutjens JP, Lutgens E, et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2001;21(12):1998-2003. doi: 10.1161/hq1201.100229
  28. Барбараш О.Л., Лебедева Н.Б., Коков А.Н. и др. Связь биохимических маркеров метаболизма костной ткани, остеопенического синдрома и коронарного атеросклероза у мужчин со стабильной ишемической болезнью сердца. Атеросклероз. 2015;11(2):5-13 [Barbarash OL, Lebedeva NB, Kokov AN, et al. The relationship of biochemical markers of bone metabolism, osteopenic syndrome and coronary atherosclerosis in men with stable coronary heart disease. Atherosclerosis. 2015;11(2):5-13 (In Russ.)].
  29. Zhou X, Cui Y, Han J. Phosphate/pyrophosphate and MV-related proteins in mineralisation: discoveries from mouse models. Int J Biol Sci. 2012;8(6):778-90. doi: 10.7150/ijbs.4538
  30. Abdelbaky A, Corsini E, Figueroa AL, et al. Focal arterial inflammation precedes subsequent calcification in the same location a longitudinal FDG-PET/CT Study. Circ Cardiovasc Imaging. 2013;6(5):747-54. doi: 10.1161/CIRCIMAGING.113.000382
  31. Li H, Hong S, Zheng Y, et al. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+T cells. Blood. 2010;116:210-7. doi: 10.1182/blood-2009-11-255026
  32. Chai M, Zhang HT, Zhou YJ, et al. Elevated IL-37 levels in the plasma of patients with severe coronary arterycalcification. J Geriatr Cardiol. 2017;14(5):285-91. doi: 10.11909/j.issn.1671-5411.2017.05.013
  33. Zheng W, Kang H, Shu C, et al. Expression and significance of inflammatory factors and bone formation mediators in carotid atherosclerotic plaque. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2008;33(8):746-50.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 

Address of the Editorial Office:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Correspondence address:

  • Alabyan Street, 13/1, Moscow, 127055, Russian Federation

Managing Editor:

  • Tel.: +7 (926) 905-41-26
  • E-mail: e.gorbacheva@ter-arkhiv.ru

 

© 2018-2021 "Consilium Medicum" Publishing house


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies