Linear prediction coefficients correction method for digital speech processing systems with data compression based on the autoregressive model of a voice signal

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of distortion of the autoregressive model of the voice signal under the influence of additive background noise in digital speech processing systems with data compression based on linear prediction is considered. In the frequency domain, these distortions are observed in the weakening of the main formants responsible for the intelligibility of the speaker’s speech. To compensate for formant attenuation, it is proposed to modify the parameters of the autoregressive model (linear prediction coefficients) using the impulse response of a recursive shaping filter. Along with the amplitude amplification of the formants, their frequencies remain unchanged to make the speaker’s voice recognizable. The effectiveness of the method was studied experimentally using specially developed software. Based on the experimental results, conclusions were drawn about a significant increase in the relative level of formants in the power spectrum of the corrected voice signal.

About the authors

V. V. Savchenko

Editorial office of the journal “Radio Engineering and Electronics”

Author for correspondence.
Email: vvsavchenko@yandex.ru
Russian Federation, Mokhovaya St., 11, bldg. 7, Moscow, 125009

L. V. Savchenko

National Research University Higher School of Economics

Email: vvsavchenko@yandex.ru
Russian Federation, B. Pecherskaya St., 25, Nizhny Novgorod, 603155

References

  1. Rabiner L.R., Schafer R.W. // Foundations and Trends in Signal Processing. 2007. V. 1. № 1–2. P. 1. https://doi.org/10.1561/2000000001
  2. O’Shaughnessy D. // J. Audio. Speech. Music Processing. 2023. V. 8. https://doi.org/10.1186/s13636-023-00274-x
  3. Savchenko V.V. // Radioelectron. Commun. Systems. 2021. V. 64. № 11. P. 592. https://doi.org/10.3103/S0735272721110030
  4. Gibson J. // Information. 2019. V. 10. № 5. 179. https://doi.org/10.3390/info10050179
  5. Chaouch H., Merazka F., Marthon Ph. // Speech Commun. 2019. V. 108. P. 33. https://doi.org/10.1016/j.specom.2019.02.002.
  6. Савченко В.В., Савченко Л.В. // Измерит. техника. 2019. № 9. С. 59. https://doi.org/10.32446/0368-1025it.2019-9-59-64
  7. Candan Ç. // Signal Processing. 2020. V. 166. № 10. Р. 107256. https://doi.org/10.1016/j.sigpro.2019.107256
  8. Semenov V.Yu. // J. Automation and Inform. Sci. 2019. V. 51. № 2. P. 30. https://doi.org/10.1615/JAutomatInfScien.v51.i2.40
  9. Marple S.L. Digital Spectral Analysis with Applications. 2-nd ed. Mineola: Dover Publ., 2019.
  10. Burg J.P. Maximum entropy spectral analysis. PhD Thesis. Stanford Univ., 1975.
  11. Magi C., Pohjalainen J., Bäckström T., Alku P. // Speech Commun. 2009. V. 51. № 5. P. 401. https://doi.org/10.1016/j.specom.2008.12.005
  12. Rout J.K., Pradhan G. // Speech Commun. 2022. V. 144. P. 101. https://doi.org/10.1016/j.specom.2022.09.004
  13. Deng F., Bao Ch. // Speech Commun. 2016. V. 79. P. 30. https://doi.org/10.1016/j.specom.2016.02.006
  14. Савченко В.В., Савченко А. В. // Измерит. техника. 2020. № 11. С. 65. https://doi.org/10.32446/0368-1025it.2020-11-65-72
  15. Савченко В.В. // РЭ. 2023. Т. 68. № 2. С. 138. https://doi.org/10.31857/S0033849423020122
  16. Kathiresan Th., Maurer D., Suter H., Dellwo V. // J. Acoust. Soc. Amer. 2018. V. 143. № 3. P. 1919. https://doi.org/10.1121/1.5036258
  17. Ngo Th., Kubo R., Akagi M. // Speech Commun. 2021. V. 135. P. 11. https://doi.org/10.1016/j.specom.2021.09.004
  18. Palaparthi A., Titze I. R. // Speech Commun. 2020. V. 123. P. 98. https://doi.org/10.1016/j.specom.2020.07.003
  19. Sadasivan J., Seelamantula Ch.S., Muraka N.R. // Speech Commun. 2020. V. 116. P. 12. https://doi.org/10.1016/j.specom.2019.11.001
  20. Gustafsson Ph.U., Laukka P., Lindholm T. // Speech Commun. 2023. V. 146. P. 82. https://doi.org/10.1016/j.specom.2022.12.001
  21. Ito M., Ohara K., Ito A., Yano M. // Proc. Interspeech. 2010. V. 2490. https://doi.org/10.21437/Interspeech.2010-669
  22. Arun-Sankar M.S., Sathidevi P. S. // Heliyon. 2019. V. 5. № 5. Р. e01820. https://doi.org/10.1016/j.heliyon.2019.e01820
  23. Narendra N.P., Alku P. // Speech Commun. 2019. V. 110. P. 47. https://doi.org/10.1016/j.specom.2019.04.003
  24. Alku P., Kadiri S.R., Gowda D. // Computer Speech & Language. 2023. V. 81. № 10. Р. 101515. https://doi.org/10.1016/j.csl.2023.101515
  25. Sadok S., Leglaive S., Girin L. et al. // Speech Commun. 2023. V. 148. P. 53. https://doi.org/10.1016/j.specom.2023.02.005
  26. Nguyen D.D., Chacon A., Payten Ch.L. et al. // Int. J. Language & Commun. Disorders. 2022. V. 57. № 2. P. 366. https://doi.org/10.1111/1460-6984.12705

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences