GALLIUM NANOPARTICLES OBTAINED ON SILICON SUBSTRATES BY THERMAL EVAPORATION METHOD

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Gallium nanostructures have been obtained on silicon substrates by thermal evaporation in an argon atmosphere. The sizes, density, and shape of Ga particles have been determined by computer processing of electron SEM-images. The condensation of Ga on Si substrates for 10, 15, and 20 s ensured the formation of particles of several types: spherical, triangular, square, and in the form of rods and polyhedrons. The increase in the Ga condensation time to 20 s led to the increase in the density of spherical nanoparticles by 41%.

作者简介

G. Kozhemyakin

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: genakozhemyakin@mail.ru
Россия, Москва

Yu. Belov

Bauman Moscow State Technical University, Kaluga Branch, Kaluga, 248000 Russia

Email: genakozhemyakin@mail.ru
Россия, Калуга

M. Trufanova

Vladimir Dal Lugansk State University, Lugansk, 91034 Russia

Email: genakozhemyakin@mail.ru
Россия, Луганск

V. Artemov

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: genakozhemyakin@mail.ru
Россия, Москва

I. Volchkov

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

编辑信件的主要联系方式.
Email: genakozhemyakin@mail.ru
Россия, Москва

参考

  1. Teske D., Drumheller J.E. // J. Phys.: Condens. Matter. 1999. V. 11 (25). P. 4935. https://doi.org/10.1088/0953-8984/11/25/312
  2. Charnaya E.V., Tien C., Lee M.K. et al. // Indium. N.-Y.: Nova Science Publ. Inc., 2013. P. 1.
  3. Charnaya E.V., Tien C., Lin K.J. et al. // Phys. Rev. B. 1998. V. 58. P. 467. https://doi.org/10.1103/physrevb.58.467
  4. Wu P.C., Khoury C.G., Kim T.-H. et al. // J. Am. Chem. Soc. 2009. V. 131 (34). P. 12033. https://doi.org/10.1021/ja903321z
  5. Yi C., Kim T.-H., Jiao W. et al. // Small. 2012. V. 8 (17). P. 2721. https://doi.org/10.1002/smll.201200694
  6. Wu P.C., Kim T.-H., Brown A.S. et al. // Appl. Phys. Lett. 2007. V. 90. P. 103119. https://doi.org/10.1063/1.2712508
  7. Losurdo M., Yi C., Suvorova A. et al. // ACS Nano 2014. V. 8 (3). P. 3031. https://doi.org/10.1021/nn500472r
  8. Knight M.W., Coenen T., Yang Y. // ACS Nano. 2015. V. 9 (2). P. 2049. https://doi.org/10.1021/nn5072254
  9. Küpers H., Bastiman F., Luna E. et al. // J. Cryst. Growth. 2017. V. 459. P. 43. https://doi.org/10.1016/j.jcrysgro.2016.11.065
  10. Matteini F., Tütüncüoglu G., Potts H. et al. // Cryst. Growth Des. 2015. V. 15. P. 3105. https://doi.org/10.1021/acs.cgd.5b00374
  11. Tauchnitz T., Nurmamytov T., Hübner R. et al. // Cryst. Growth Des. 2017. V. 17 (10). P. 5276. https://doi.org/10.1021/acs.cgd.7b00797
  12. Kozhemyakin G.N., Belov Yu.S., Trufanova M.K. et al. // Inorg. Mater.: Appl. Res. 2022. V. 13 (3). P. 788. https://doi.org/10.1134/S2075113322030200
  13. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006. 592 с.
  14. Физические величины: Справочник. Ред. Григорьева И.С., Мейлихова Е.З. М.: Энергоатомиздат, 1991. 1232 с.
  15. Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и диэлектриков. М.: Металлургия, 1988. 576 с.
  16. Горшков В.С., Савельев В.Г., Федоров Н.Ф. Физическая химия силикатов и других тугоплавких соединений. М.: Высшая школа, 1988. 400 с.
  17. Могилевский Б.М., Чудновский А.Ф. Теплопроводность полупроводников. М.: Наука, 1972. 536 с.
  18. Чеканова В.Д., Фиалков А.С. // Успехи химии. 1971. Т. 40. № 5. С 777. https://doi.org/10.1070/RC1971v040n05ABEH001927

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (68KB)
4.

下载 (1MB)
5.

下载 (84KB)

版权所有 © Russian Academy of Sciences, 2023