ROCKING CURVE OF A DOUBLE-CRYSTAL SPECTROMETER IN THE BRAGG-BRAGG GEOMETRY INCLUDING THE ABSORPTION COEFFICIENT DEPENDENCY FROM THE NEUTRON WAVELENGTH
- 作者: Schmeissner J.1,2, Tyulyusov A.N.1,2
-
隶属关系:
- National research center “Kurchatov Institute,” Moscow, Russia
- National research nuclear university “MEPhI,” Moscow, Russia
- 期: 卷 68, 编号 4 (2023)
- 页面: 531-535
- 栏目: ДИФРАКЦИЯ И РАССЕЯНИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673378
- DOI: https://doi.org/10.31857/S0023476123600180
- EDN: https://elibrary.ru/JOUCLS
- ID: 673378
如何引用文章
详细
An analytical expression is obtained for the rocking curve of a double-crystal spectrometer, which does not require restrictions on the absorption cross section dependency on the wavelength. A modeled rocking curve (instrumental line) for the Bragg–Bragg spectrometric scheme is calculated using the example of an InSb crystal in the region of weak dependency between the absorption cross section and the wavelength and in the region of wavelengths close to the absorption resonance.
作者简介
J. Schmeissner
National research center “Kurchatov Institute,” Moscow, Russia; National research nuclear university “MEPhI,” Moscow, Russia
Email: yokhan.schmeissner@itep.ru
Россия, Москва; Россия, Москва
A. Tyulyusov
National research center “Kurchatov Institute,” Moscow, Russia; National research nuclear university “MEPhI,” Moscow, Russia
编辑信件的主要联系方式.
Email: yokhan.schmeissner@itep.ru
Россия, Москва; Россия, Москва
参考
- Compton A., Allison S. X-rays in theory and experiment. New York: D. Van Nostrand Company. Inc. 1935. https://doi.org/10.1148/25.5.640
- Пинскер З.Г. Рентгеновская кристаллооптика. М.: Наука,1982.
- Authier A. Dynamical theory of X-ray diffraction. IUCr. Oxford Science. Oxford. U.K. 2001. https://doi.org/10.1107/97809553602060000569
- Абов Ю.Г., Елютин Н.О., Тюлюсов А.Н. // Ядерная физика. 2002. Вып. 65. С. 1989. https://doi.org/10.1134/1.1522085
- Willis B.T.M. // Acta Cryst. B. 1960. V. 13. P. 763. https://doi.org/10.1107/S0365110X60001849
- Szabo C.I., Cline J.P., Henins A. et al. // J. Res. Natl. Inst. Stand. Technol. 2021. V. 126. P. 126049. https://doi.org/10.6028/jres.126.049
- Dolzhenkova E., Babenko G., Voronov A. et al. // Acta Phys. Pol. A. 2022. V. 141. https://doi.org/10.12693/aphyspola.141.41
- Bragg W.H., Bragg W.L. // P. R. Soc. Lond. A. 1913. V. 88. P. 428. https://doi.org/10.1098/rspa.1913.0040
- Borrmann G. // Physik Z. 1941. B. 42. S. 157.
- Knowles J.W. // Acta Cryst. 1956. V. 9. P. 61. https://doi.org/10.1107/S0365110X56000115
- Шильштейн С.Ш., Соменков В.А. // Кристаллография. 1975. Т. 20. Вып. 5. С. 1096.
- Zippel D., Kleinstuck K., Schulze G.E.R. // Phys. Lett. 1964. V. 8. P. 241.
- Каган Ю.М., Афанасьев А.М. // ЖЭТФ. 1966. Т. 49. Вып. 5. С. 1504.
- Вежлев Е.О., Воронин В.В., Кузнецов И.А. и др. // Письма в ЖЭТФ. 2012. Т. 96. Вып. 1. С. 3. https://doi.org/10.1134/S0021364012130127
- Абов Ю.Г., Елютин Н.О., Львов Д.В., Тюлюсов А.Н. // Ядерная физика. 2019. Т. 82. Вып. 4. https://doi.org/10.1134/S0044002719040032
- Абов Ю.Г. // Успехи физ. наук. 1996. Вып. 166. С. 949. https://doi.org/10.3367/UFNr.0166.199609d.0949
补充文件
