Study of the Precrystallization Solution of Lysozyme by Accelerated Molecular Dynamics Simulation
- 作者: Ivanovsky A.S.1, Garipov I.F.2, Kordonskaya Y.V.3,1, Timofeev V.I.3,1, Marchenkova M.A.3,1, Pisarevsky Y.V.1,3, Dyakova Y.A.3, Kovalchuk M.V.3,1
-
隶属关系:
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
- National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia
- 期: 卷 68, 编号 6 (2023)
- 页面: 951-954
- 栏目: КРИСТАЛЛОГРАФИЯ В БИОЛОГИИ И МЕДИЦИНЕ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673307
- DOI: https://doi.org/10.31857/S0023476123600635
- EDN: https://elibrary.ru/HJUXNC
- ID: 673307
如何引用文章
详细
The behavior of a dimer isolated from the crystal structure of tetragonal lysozyme has been simulated using the accelerated molecular dynamics method. The simulation time was 240 ns. The simulation data are compared with the data obtained previously using classical molecular dynamics. It is shown that the dimer studied is stable in both experiments, but the accelerated molecular dynamics method made it possible to reveal additional conformational changes in lysozyme molecules.
作者简介
A. Ivanovsky
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
Email: a.1wanowskiy@gmail.com
Россия, Москва
I. Garipov
Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
Email: ildar.garipov.f@gmail.com
Россия, Москва
Yu. Kordonskaya
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва
V. Timofeev
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва
M. Marchenkova
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва
Yu. Pisarevsky
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia; National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia
Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва
Yu. Dyakova
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia
Email: a.1wanowskiy@gmail.com
Россия, Москва
M. Kovalchuk
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
编辑信件的主要联系方式.
Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва
参考
- Timofeev V., Samygina V. // Crystals. 2023. V. 13 (1). P. 71. https://doi.org/10.3390/cryst13010071
- https://www.rcsb.org/stats/summary
- Pusey M., Witherow W., Naumann R. // ScienceDirect. 1988. V. 90. P. 105. https://doi.org/10.1016/0022-0248(88)90304-1
- Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. // Cryst. Growth Des. 2016. V. 16. № 4. P. 1792. https://doi.org/10.1021/acs.cgd.5b01662
- Aaron Taudt, Axel Arnold, Jurgen Pleiss // Phys. Rev. E. 2015. V. 91. 033311. https://doi.org/10.1103/PhysRevE.91.033311
- Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystals. 2021. V. 11 (1). P. 1121. https://doi.org/10.3390/cryst11091121
- Antonija Kuzmanic, Bojan Zagrovic // Biophys. J. 2014. V. 106. P. 677. https://doi.org/10.1016/j.bpj.2013.12.022
- Cerutti D.S., Trong I., Stenkamp R.E., Lybrand T.P. // Biochemistry. 2008. V. 47–46. P. 12065. https://doi.org/10.1021/bi800894u
- Meinhold L., Merzel F., Smith J.C. // Phys. Rev. Lett. 2007. V. 99. 138101. https://doi.org/10.1103/PhysRevLett.99.138101
- Cerutti D.S., Trong I., Stenkamp R.E., Lybrand T.P. // J. Phys. Chem. B. 2009. V. 113. № 19. P. 6971. https://doi.org/10.1021/jp9010372
- Kordonskaya Y.V., Marchenkova M.A., Timofeev V.I. et al. // J. Biomol. Struct. Dyn. 2020 V. 39 (18). P. 7223. https://doi.org/10.1080/07391102.2020.1803138
- Kordonskaya Y.V., Timofeev V.I., Marchenkova M.A., Konarev P.V. // Crystals. 2022. V. 12. P. 484. https://doi.org/10.3390/cryst12040484
- Nguyen H., Maier J., Huang H. et al. // J. Am. Chem. Soc. 2014. V. 136 (40). P. 13959. https://doi.org/10.1021/ja5032776
- Onufriev A.V., Case D.A. // Annu. Rev. Biophys. 2019. V. 58. P. 275. https://doi.org/10.1146/annurev-biophys-052118-115325
- Marrink S.J., Risselada H.J., Yefimov S. et al. // J. Phys. Chem. B. 2007. V. 111. № 27. P. 7812. https://doi.org/10.1021/jp071097f
- Sun F., Schroer C.F.E., Palacios C.R. et al. // PLoS Comput. Biol. 2022. V. 16 (4). E. 1007777. https://doi.org/10.1371/journal.pcbi.1007777
- Pezeshkian W., Marrink S.J. // Curr. Opin. Cell Biol. 2021. V. 71. P. 103. https://doi.org/10.1016/j.ceb.2021.02.009
- Thallmair S., Javanainen M., Fábián B. et al. // J. Phys. Chem. 2021. V. 125. (33). P. 9537. https://doi.org/10.1021/acs.jpcb.1c03665
- Frallicciardi J., Melcr J., Siginou P. et al. // Nat. Commun. 2022. V. 13. P. 1605. https://www.nature.com/articles/s41467-022-29272-x
- Korotkova P.D., Shumm A.B., Vladimirov Y.A. et al. // Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2021. V. 15. № 4. P. 652.
- Hamelberg D., Mongan J., McCammon J.A. // J. Chem. Phys. 2004. V. 120 (24). P. 11919. https://doi.org/10.1063/1.175565
- Shaw D.E. et al. // Science. 2010. V. 330. P. 341. https://doi.org/10.1126/science.1187409
- Marchenkova M.A. et al. // J. Biomol. Struct. Dyn. 2020. V. 38. № 17. P. 5159. https://doi.org/10.1080/07391102.2019.1696706
- Dolinsky T.J. et al. // Nucl. Acids Res. 2004. V. 32. P. W665. https://doi.org/10.1093/nar/gkh381
- Case D.A. et al. // J. Comput. Chem. 2005. V. 26. P. 1668. https://doi.org/10.1002/jcc.20290
- Tian C. et al. // J. Chem. Theory Comput. 2020. V. 16. P. 528. https://doi.org/10.1021/acs.jctc.9b00591
- Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79 (2). P. 926. https://doi.org/10.1063/1.445869
- Allen M.P., Tildesley D.J. // Computer simulation of liquids. New York: Oxford university press, 1991.
- Hoover W.G., Ladd A.J.C., Phys B.M. // Phys. Rev. Lett. 1982. V. 48. 1818. https://doi.org/10.1103/PhysRevLett.48.1818
- Evans D.J., Chem J. // Chem. Phys. 1983. V. 77 (1). P. 63. https://doi.org/10.1016/0301-0104(83)85065-4
- Berendsen H.J.C. et al. // J. Chem. Phys. 1984. V. 81. P. 3684. https://doi.org/10.1063/1.448118
- Kordonskaya Y.V., Timofeev V.I., Dyakova Y.A. et al. // Crystals. 2021. V. 11. P. 1534. https://doi.org/10.3390/cryst11121534
