Дефекты, инициирующие усталостные разрушения в гранулированном сплаве ЭП741НП (часть II)
- Авторы: Артемов В.В.1, Бондаренко В.И.1, Артамонов М.А.2, Кумсков А.С.1, Павлов И.С.1, Марчуков Е.Ю.2, Васильев А.Л.1,3
-
Учреждения:
- Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”
- Опытно-конструкторское бюро им. А. Люльки, Филиал ПАО “ОДК-УМПО”
- Московский физико-технический институт (национальный исследовательский университет)
- Выпуск: Том 70, № 5 (2025)
- Страницы: 722-731
- Раздел: РЕАЛЬНАЯ СТРУКТУРА КРИСТАЛЛОВ
- URL: https://ter-arkhiv.ru/0023-4761/article/view/693865
- DOI: https://doi.org/10.31857/S0023476125050022
- EDN: https://elibrary.ru/veddeq
- ID: 693865
Цитировать
Полный текст



Аннотация
Об авторах
В. В. Артемов
Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”Москва, Россия
В. И. Бондаренко
Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”Москва, Россия
М. А. Артамонов
Опытно-конструкторское бюро им. А. Люльки, Филиал ПАО “ОДК-УМПО”Москва, Россия
А. С. Кумсков
Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”Москва, Россия
И. С. Павлов
Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”Москва, Россия
Е. Ю. Марчуков
Опытно-конструкторское бюро им. А. Люльки, Филиал ПАО “ОДК-УМПО”Москва, Россия
А. Л. Васильев
Отделение “Институт кристаллографии им. А.В. Шубникова” Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”; Московский физико-технический институт (национальный исследовательский университет)
Email: a.vasiliev56@gmail.com
Москва, Россия; Долгопрудный, Россия
Список литературы
- Павлов И.С., Артамонов М.А., Артемов В.В. и др. // Кристаллография. 2024. Т. 69. № 6. С. 927. https://doi.org/10.31857/S0023476124060027
- Волков А.М., Карашаев М.М., Летников М.Н. и др. // Технология металлов. 2019. № 1. С. 2. https://doi.org/10.31044/1684-2499-2019-1-0-2-8
- Гарибов Г.С., Кошелев В.Я., Шорошев Ю.Г. и др. // Заготовительные производства в машиностроении. 2010. № 1. С. 45.
- Belan J. // Mater. Today Proc. 2016. V. 3. P. 936. https://doi.org/10.1016/j.matpr.2016.03.024
- Ida S., Yamagata R., Nakashima H. et al. // Metals (Basel). 2022. V. 12. P. 1817. https://doi.org/10.3390/met12111817
- Zhao S., Xie X., Smith G.D. et al. // Mater. Sci. Eng. A. 2003. V. 355. P. 96. https://doi.org/10.1016/S0921-5093(03)00051-0
- Симс Ч.Т., Норман С.С., Уильям С.Х. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Т. 1. М.: Металлургия, 1995. 384 с.
- Трунькин И.Н., Артамонов М.А., Овчаров А.В. и др. // Кристаллография. 2019. Т. 64. С. 539. https://doi.org/10.1134/S002347611904026X
- Sasaki S., Fujino K., Takéuchi Y. // Proc. Jpn Acad. B. 1979. V. 55. P. 43. https://doi.org/10.2183/pjab.55.43
- Prostakova V., Chen J., Jak E. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
- Peng Y., Huang G., Long L. et al. // Calphad. 2020. V. 70. P. 101769. https://doi.org/10.1016/j.calphad.2020.101769
- Johnson B., Jones J.L. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier, 2019. 570 p. https://doi.org/10.1016/B978-0-08-102430-0.00002-4
- Taylor J.R., Dinsdale A.T., Hilleit M. et al. // Calphad. 1992. V. 16. P. 173. https://doi.org/10.1016/0364-5916(92)90005-I
- Alper A.M., McNally R.N., Ribbe P.H. et al. // J. Am. Ceram. Soc. 1962. V. 45. P. 263. https://doi.org/10.1111/j.1151-2916.1962.tb11141.x
- Davydov A., Kattner U.R. // J. Phase Equilibria. 1999. V. 20. P. 5. https://doi.org/10.1361/105497199770335893
- Chen M., Hallstedt B., Gauckler L.J. // J. Phase Equilibria. 2003. V. 24. P. 212. https://doi.org/10.1361/105497103770330514
- Murray J.L. // Bull. Alloy Phase Diagrams. 1986. V. 7. P. 156. https://doi.org/10.1007/BF02881555
- Pérez R.J., Massih A.R. // J. Nucl. Mater. 2007. V. 360. P. 242. https://doi.org/10.1016/j.jnucmat.2006.10.008
- Okamoto H. // J. Phase Equilibria Diffus. 2011. V. 32. P. 473. https://doi.org/10.1007/s11669-011-9935-5
- He K., Sun J., Tang X. // IEEE Trans. Pattern Anal. Machine Intell. 2013. V. 35. № 6. P. 1397. https://doi.org/10.1109/TPAMI.2012.213
- Nagajyothi G., Raghuveera E. // Int. J. Adv. Res. Electron. Commun. Eng. 2016. V. 5. P. 2362.
- Li Z., Zheng J., Zhu Z. et al. // IEEE Trans. Image Process. 2015. V. 24. P. 120. https://doi.org/10.1109/TIP.2014.2371234
- Бендат Дж., Пирсол А. Примения корреляционного и спектрального анализа. Пер. с англ. М.: Мир, 1983, 312 с.
- Land E.W., McMann J.J. // J. Opt. Soc. Am. 1971. V. 61. № 1. P. 1. https://doi.org/10.1364/JOSA.61.000001
- Jobson D.J., Rahman Z., Wodell G.A. // IEEE Trans. Image Process. 1997. V. 6. № 7. P. 965. https://doi.org/10.1109/83.597272
- Rahman Z., Jobson D.J., Woodel G.A. // J. Electron. Imaging. 2004. V. 13. № 1. P. 100. https://doi.org/10.1117/1.1636183
- Гонзалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.
- Limaye A. // SPIE, San Diego. 2012. V. 8506
- Hu D., Limaye A., Lu J. // R. Soc. Open Sci. 2020. https://doi.org/10.1098/rsos.201033
Дополнительные файлы
