Ионная проводимость и термическая стабильность кристаллов BiF3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Исследованы температурная зависимость ионной электропроводности σdc(T) и термическая стабильность кристаллов BiF3 со структурой ромбического β-YF3 (пр. гр. Pnma, a = 6.5620(1), b = = 7.0144(1), c = 4.8410(1) Å, V/Z = 55.71 Å3), выращенных из расплава методом вертикальной направленной кристаллизации. Электрофизические характеристики BiF3 получены из импедансных измерений в интервале температур 360−540 K. Значение σdc при T = 500 K и энтальпия активации ионного переноса ΔHa равны 2.5 × 10−5 См/см и 0.48 ± 0.05 эВ соответственно. Величина ΔHa для изученного кристалла меньше в 1.4 раза по сравнению с изоструктурными редкоземельными (Tb, Ho, Er, Y) трифторидами, что обусловлено высокой электронной поляризуемостью и большим ионным радиусом катионов Bi3+. Обнаружено, что кристаллы BiF3 термически стабильны до 550−600 K, при более высоких температурах они деградируют из-за сублимации вещества и пирогидролиза. Образование оксифторидных фаз \({\text{Bi}}{{{\text{O}}}_{x}}{{{\text{F}}}_{{3--2x}}}\) является причиной наблюдаемого скачка проводимости на зависимости σdc(T) при T ∼ 600 K.

Ключевые слова

Об авторах

Н. И. Сорокин

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН

Email: nsorokin1@yandex.ru
Россия, Москва

Д. Н. Каримов

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника” РАН

Автор, ответственный за переписку.
Email: dnkarimov@gmail.com
Россия, Москва

Список литературы

  1. Кавун В.Я., Уваров Н.Ф., Слободюк А.Б. и др. // Изв. РАН. Сер. хим. 2022. № 6. С. 1059.
  2. Слободюк А.Б., Полянцев М.М., Гончарук В.К., Кавун В.Я. // Вестн. ДВО РАН. 2021. № 5. С. 95.
  3. Сорокин Н.И., Соболев Б.П. // Электрохимия. 2011. Т. 47. № 1. С. 118.
  4. Baumgartner J.F., Krumeich F., Worle M. et al. // Commun. Chem. 2022. V. 5. P. 6. https://doi.org/10.1038/s42004-021-00622-y
  5. Liu T., Peng N., Zhang X. et al. // Energy Storage Mater. 2021. V. 42. P. 42. https://doi.org/10.1016/j.ensm.2019.03.028
  6. Xiao A.W., Galatolo G., Pasta M. // Joule. 2021. V. 5. № 11. P. 2823. https://doi.org/10.1016/j.joule.2021.09.016
  7. Konishi H., Minato T., Abe T., Ogumi Z. // ChemistrySelect. 2020. V. 5. № 21. P. 4943. https://doi.org/10.1002/slct.202001163
  8. Gschwind F., Rodriguez-Garcia G., Sandbeck D.J.S. et al. // J. Fluor. Chem. 2016. V. 182. P. 76. https://doi.org/10.1016/j.jfluchem.2015.12.002
  9. Greis O., Martinez-Ripoll M. // Z. Anorg. Allg. Chem. 1977. B. 436. № 1. S. 105. https://doi.org/10.1002/zaac.19774360112
  10. Yang Z., Pei Y., Wang X. et al. // Comput. Mater. Sci. 2013. V. 68. P. 117. https://doi.org/10.1016/j.commatsci.2012.10.003
  11. Kim K.J., Yoshimura M., Somiya S. // Solid State Ionics. 1991. V. 44. № 3–4. P. 281. https://doi.org/10.1016/0167-2738(91)90019-8
  12. Croatto U. // Z. Anorg. Allg. Chem. 1949. B. 258. № 3–5. S. 198. https://doi.org/10.1002/zaac.19492580310
  13. Ardashnikova E.I., Prituzhalov V.A., Kutsenok I.V. // Functionalized Inorganic Fluorides: Synthesis, Characterization and Properties of Nanostructured Solids / Ed. Tressaud A. Chichester: John Wiley, 2010. P. 423. https://doi.org/10.1002/9780470660768.ch14
  14. Ардашникова Е.И., Борзенкова М.П., Калинченко Ф.В., Новоселова А.В. // Журн. неорган. химии. 1981. Т. 26. № 7. С. 1727.
  15. Nakamura G.H.G., Klimm D., Baldochi S.L. // Thermochim. Acta. 2013. V. 551. P. 131. https://doi.org/10.1016/j.tca.2012.10.005
  16. Pastor R.C., Harrington J.A., Gorre L.E., Chew R.K. // Mater. Res. Bull. 1979. V. 14. № 4. P. 543. https://doi.org/10.1016/0025-5408(79)90198-3
  17. Shafer M.W., Chandrashekhar G.N., Figat R.A. // Solid State Ionics. 1981. V. 5. P. 633. https://doi.org/10.1016/0167-2738(81)90334-9
  18. Spedding F.H., Beaudry B.J., Henderson D.C., Moorman J. // J. Chem. Phys. 1973. V. 60. № 4. P. 1578. https://doi.org/10.1063/1.1681233
  19. Greis O., Cader M.S.R. // Thermochim. Acta. 1985. V. 87. № 1. P. 145. https://doi.org/10.1016/0040-6031(85)85329-6
  20. Thoma R.E., Brunton G.D. // Inorg. Chem. 1966. V. 5. № 11. P. 1937. https://doi.org/10.1021/ic50045a022
  21. Ардашникова Е.И., Борзенкова М.П., Новоселова А.В., Свищев И.М. // Журн. неорган. химии. 1986. Т. 31. № 2. С. 513.
  22. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. Т. 2. СПб.: Изд-во СПбГУ, 2010. 1000 с.
  23. Каримов Д.Н., Бучинская И.И., Дымшиц Ю.М. и др. // Патент RU 2778808, 25.08.2022.
  24. Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. № 6. С. 1748.
  25. Калинченко Ф.В. // //Дисс. канд. хим. наук. М.: МГУ. 1982. 203 с.
  26. Cheetham A.B., Norman N. // Acta Chem. Scand. A. 1974. V. 28. P. 55.
  27. Виноградова-Жаброва А.С., Сивцова О.В., Патрушева В.Г., Бамбуров В.Г. // Журн. неорган. химии. 2001. Т. 46. № 2. С. 274.
  28. Matar S., Reau J.-M., Rabardel L. et al. // Solid State Ionics. 1983. V. 11. № 1. P. 77. https://doi.org/10.1016/0167-2738(83)90066-8
  29. Сорокин Н.И., Каримов Д.Н., Соболев Б.П. // Кристаллография. 2019. Т. 64. № 4. С. 596. https://doi.org/10.1134/S0023476119040222
  30. Сорокин Н.И., Соболев Б.П., Брайтер М. // ФТТ. 2002. Т. 44. № 2. С. 272.
  31. Trnovcova V., Fedorov P.P., Valkovskii M.D. et al. // Ionics. 1997. V. 3. P. 313. https://doi.org/10.1007/BF02375637
  32. Трновцова В., Федоров П.П., Соболев Б.П. и др. // Кристаллография. 1996. Т. 41. № 4. С. 731.
  33. Greis O., Petzel T. // Z. Anorg. Allg. Chem. 1974. B. 403. № 1. S. 1. https://doi.org/10.1002/zaac.19744030102
  34. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S056773947600155

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (809KB)
3.

Скачать (109KB)

© Российская академия наук, 2023