Features of three-dimensional reconstruction of spirals based on small-angle x-ray scattering data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The interest in spiral particles lies in their resemblance to authentic nanostructures that emerge through the self-organisation of biopolymers (such as carrageenans, DNA, and so forth). Conversely, the determination of the structural parameters of such particles based on small-angle scattering data is challenging due to the lack of conditioning in the inverse problem. This is demonstrated by the utilisation of established bead structure modelling software. This paper considers a modification of the search algorithm in a limited area of space and the behaviour of solutions depending on the values of the parameters of the objective function responsible for the connectivity and looseness of the structure, the type of weighing of the scattering intensity curve, and the width of the angular range of data. In order to statistically assess the stability of the solutions, a sequential model search mode was applied, with varying amounts of contributions of penalty terms. The empirical dependences of the optimal values of the search parameters with respect to the parameters of the distribution curve of paired distances were determined.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Grigorev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: vasiliy.grigorev.1996@mail.ru
Ресей, Moscow

P. Konarev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: vasiliy.grigorev.1996@mail.ru
Ресей, Moscow

V. Volkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: vasiliy.grigorev.1996@mail.ru
Ресей, Moscow

Әдебиет тізімі

  1. Свергун Д.И., Фейгин Л.А. Рентгеновское и малоугловое рассеяние. М.: Наука, 1986. 280 с.
  2. Svergun D.I., Stuhrmann H.B. // Acta Cryst. A. 1991. V. 47. P. 736. https://doi.org/10.1107/S0108767391006414
  3. Svergun D.I., Volkov V.V., Kozin M.B. et al. // Acta Cryst. A. 1996. V. 52. P. 419. https://doi.org/10.1107/S0108767396000177
  4. He H., Liu C., Liu H. // iScience. 2020. V. 23. 100906.
  5. Svergun D.I. // Biophys J. 1999. V. 78. P. 2879. https://doi.org/10.1016/S0006 3495(99)77443-6
  6. Franke D., Svergun D.I. // J. Appl. Cryst. 2009. V. 42. P. 342. https://doi.org/10.1107/S0021889809000338
  7. Kirkpatrick S., Gelatt C.D., Vecchi M.P. // Science. 1983. V. 220. P. 671. https://doi.org/10.1126/science.220.4598.671
  8. Григорьев В.А., Конарев П.В., Волков В.В. // Кристаллография. 2023. Т. 68. С. 941. https://doi.org/10.31857/S0023476123600295
  9. Волков В.В. // Кристаллография. 2021. Т. 66. С. 793. https://doi.org/10.31857/S0023476121050234
  10. Григорьев В.А., Конарев П.В., Волков В.В. // Успехи в химии и химической технологии. 2022. Т. 36. С. 53
  11. Rees D.A. Polysaccharides Shapes. London: Chapman and Hall, 1977. 80 p.
  12. Shtykova E.V., Volkov V.V., Konarev P.V. et al. // J. Appl. Cryst. 2003. V. 36. P. 669. https://doi.org/10.1107/S0021889803006198
  13. Shannon C.E., Weaver W. The Mathematical Theory of Communication. University of Illinois Press, 1949. 125 p.
  14. Kozin M., Svergun D. // J. Appl. Cryst. 2001. V. 34. P. 33. https://doi.org/10.1107/S0021889800014126
  15. Taha AA., Hanbury A. // BMC Med Imaging. 2015. V. 15. P. 29. https://doi.org/10.1186/s12880-015-0068-x
  16. Svergun D.I. // J. Appl. Cryst. 1992. V. 25. P. 495.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Theoretical models of helices: top – side view, horizontal – top view. Helical pitch (from left to right): 45, 50, 55 and 60 Å for a diameter of 100 and 62 Å for a diameter of 120 Å.

Жүктеу (345KB)
3. Fig. 2. Averaged sorted NSD values ​​for calculation groups consisting of five and seven models, and their mean values ​​(horizontal lines).

Жүктеу (93KB)
4. Fig. 3. Examples of found structures with a defect of the “gap” type (1) and the “connection” type (2).

Жүктеу (267KB)
5. Fig. 4. Estimation of f1-measure depending on the threshold value of the 1st quartile of NSD.

Жүктеу (59KB)
6. Fig. 5. Calculation evaluation values ​​depending on different values ​​of the algorithm parameters for models I, II, III and IV (from top to bottom). The logarithms of the penalty weights for the structure rupture are plotted along the abscissa axis, and for its looseness along the horizontal axis. The black color marks the areas of successful search.

Жүктеу (383KB)
7. Fig. 6. Approximations of the calculation estimates for models I, II, III and IV (from top to bottom).

Жүктеу (323KB)
8. Fig. 7. Graphs of pairwise distance functions for helices with a pitch h = 45, 50, 55 and 60 Å (models I, II, III, IV Fig. 1).

Жүктеу (109KB)
9. Fig. 8. Optimal values ​​of the fines for the looseness (wL) and discontinuity (wD) of a particle depending on the resolution of the peaks R on the curve p(r) for different pairs of values ​​of the degree of the weighting function (3) n and the number of Shannon channels Nsh.

Жүктеу (140KB)
10. Fig. 9. Average values ​​of the calculation evaluation for the test model V. On the left is the real result, on the right is the ideal.

Жүктеу (227KB)
11. Fig. 10. Typical reconstructed test models V for the central (columns 1, 3) and upper right (columns 2, 4) cells from Fig. 9.

Жүктеу (473KB)

© Russian Academy of Sciences, 2024