Thin-film polydiacetylenes of a stable blue phase based on symmetrical and unsymmetrical diacetylene N-arylcarbamates

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The conditions and features of the formation of Langmuir monolayers of symmetrical and asymmetrical diacetylene N-arylcarbamates and the structural organization of Langmuir-Schaefer films based on them were studied. Photopolymerization of monolayer solid films of two types of molecules was monitored using absorption spectroscopy and showed the transition of diyne molecules to the blue phase polydiacetylene state. The efficiency of the solid-phase topochemical polymerization reaction in a film of symmetrical diynes turned out to be 5 times higher than in a film of asymmetrical diyne molecules. The morphology of monolayer surfaces before and after UV irradiation was studied using scanning electron microscopy.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Alekseev

A. M. Prokhorov General Physics Institute of the Russian Academy of Science

Хат алмасуға жауапты Автор.
Email: alexanderalekseev@yandex.ru
Ресей, Moscow

S. Vyaz’min

Zh. I. Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Science

Email: alexanderalekseev@yandex.ru
Ресей, St. Petersburg

A. Ivanov

A. M. Prokhorov General Physics Institute of the Russian Academy of Science

Email: alexanderalekseev@yandex.ru
Ресей, Moscow

V. Klechkovskaya

NRC “Kurchatov Institute”

Email: alexanderalekseev@yandex.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Ресей, Moscow

М. Lukasov

NRC “Kurchatov Institute”

Email: alexanderalekseev@yandex.ru

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics

Ресей, Moscow

Әдебиет тізімі

  1. Wegner G. // Z. Naturforsch. 1969. B. 24. S. 824. https://doi.org/10.1515/znb-1969-0708
  2. Tieke B. // Adv. Polymer Sci. 1985. V. 71. P. 79.
  3. Arslanov V.V. // Adv. Colloid Interface Sci. 1992. V. 40. P. 307. https://doi.org/10.1016/0001-8686(92)80080-H
  4. Jelinek R., Ritenberg M. // RSC Adv. 2013. V. 3. P. 21192. https://doi.org/10.1039/c3ra42639d
  5. Benten H., Mori D., Ohkita H., Ito Sh. // J. Mater. Chem. A. 2016. V. 4. P. 5340. https://doi.org/10.1039/c5ta10759h
  6. Chen X., Zhou G., Peng X., Yoon J. // Chem. Soc. Rev. 2012. V. 41. P. 4610. https://doi.org/10.1039/c2cs35055f
  7. Qian X., Städler B. // Chem. Mater. 2019. V. 31. № 4. P. 1196. https://doi.org/10.1021/acs.chemmater.8b05185
  8. Fang F., Meng F., Luo L. // Mater. Chem. Front. 2020. V. 4. P. 1089. https://doi.org/10.1039/c9qm00788A
  9. Yu Zh., MuYu C., Xu H. et al. // Polym. Chem. 2023. V. 14. P. 2266. https://doi.org/10.1039/d3py00213F
  10. Roberts G. Langmuir-Blodgett Films. Plenum Press, 1990. P. 425.
  11. Tieke B., Lieser G., Wegner G. // J. Polym. Sci. Polym. Chem. Ed. 1979. V. 17. P. 1631.
  12. Tamura H., Mino N., Ogawa K. // Thin Solid Films. 1989. V. 179. P. 33.
  13. Patel G.N., Khanna Y.P., Ivory D.M. et al. // J. Polym. Sci. A. 1979. V. 17. P. 899. https://doi.org/10.1002/pol.1979.180170513
  14. Zhong L., Zhu X., Duan P., Liu M. // J. Phys. Chem. B. 2010. V. 114. P. 8871. https://doi.org/10.1021/jp1020565
  15. Alekseev A., Ihalainen P., Ivanov A. et al. // Thin Solid Films. 2016. V. 612. P. 463. https://dx.doi.org/10.1016/j.tsf.2016.06.044
  16. Mino N., Tamura H., Ogawa K. // Langmuir. 1991. V. 7. P. 2336.
  17. Alekseev A.S., Domnin I.N., Ivanov A.B. // Bulletin of the Lebedev Physics Institute. 2021. V. 48. № 11. P. 337. https://doi.org/10.3103/S1068335621110026
  18. Kruchinin V.N., Repinsky S.M., Sveshnikova L.L. et al. // Thin Solid Films. 1994. V. 240. P. 131.
  19. Marinichev A.N., Vyaz’min S. Yu., Domnin I.N. // Russ. J. Appl. Chem. 2005. V. 78. № 10. P. 1662.
  20. Alekseev A., Ihalainen P., Ivanov A. et al. // Thin Solid Films. 2018. V. 645. P. 108. https://dx.doi.org/101016/j.tsf.2017.10.018
  21. Kim T., Ye Q., Sun I. et al. // Langmuir. 1996. V. 12. P. 6065.
  22. Vyaz’min S.Y., Berezina S.E., Remizova L.A. et al. // Russ. J. Org. Chem. 2002. V. 38. P. 775.
  23. Alekseev A., Ihalainen P., Ivanov A. et al. // Thin Solid Films. 2016. V. 612. P. 463. https://dx.doi.org/10.1016/j.tsf.2016.06.0
  24. Alekseev A.S., Domnin I.N., Ivanov A.B., Tereschenko N.A. // Mendeleev Commun. 2018. V. 28. P. 409. https://doi.org/10.1016/j.mencom.2018.07.0.23
  25. Alekseev A.S., Ivanov A.B., Klechkovskaya V.V. et al. // Rev. Adv. Chem. 2023. V. 13. № 3. P. 265. https://doi.org/10.1134/S263482762360010X

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Compression isotherms of a monolayer of symmetrical (1) and asymmetrical (2) molecules of diacetylene N-arylcarbamates on the surface of an aqueous subphase.

Жүктеу (74KB)
3. Fig. 2. Changes in the optical absorption spectra of monolayer diyne films with changes in the time of their irradiation with UV light: a – symmetric diyne, b – asymmetric diyne.

Жүктеу (311KB)
4. Fig. 3. Changes in the intensity of the exciton absorption band of the blue phase of PDA (a) and the shift of this band to the long-wavelength region (b) with an increase in the UV irradiation time for films of symmetric (1) and asymmetric (2) diyne molecules.

Жүктеу (131KB)
5. Fig. 4. SEM images of a monolayer of asymmetric diyne MeO–3–2 molecules on the surface of Si substrates before (a) and after (b) 10 min of UV irradiation.

Жүктеу (391KB)
6. Fig. 5. SEM images of a monolayer of symmetric diyne molecules on the surface of Si substrates before (a) and after (b) 10 min of UV irradiation.

Жүктеу (469KB)

© Russian Academy of Sciences, 2024