Structural Transformation of Relaxor PbMg1/3Nb2/3O3 under Electric Field Switching

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One from the most important features of relaxors is the possibility of inducing a stable ferroelectric phase in them by applying an electric field. This induced phase transition has been multiply investigated; in particular, the structural changes during the transition and its kinetics were traced. However, the processes occurring under electric field switching remain little-studied, and the structural transformation during switching generally has not been investigated at all. To fill in this gap, the temporal evolution of the pattern of Bragg and diffuse X-ray scattering in classical relaxor PbMg1/3Nb2/3O3 at T = 175 K during multiple switching of the direction of a dc external field E = ± 6.25 kV/cm has been traced. It is shown that the glasslike state decays and a mixed ferro-glass phase is formed after switched on a field. Switching the field sign leads to a rise of dipole-glass correlations; however, no signs of occurrence of an inhomogeneous state with limited regions of dipole-glass and ferroelectric phases were found. Switching the field to the initial direction causes rapid formation of the ferroelectric phase, without any rise in the dipole-glass correlations. A repeated switching leads to a decrease in the Bragg scattering intensity, related to the long-range order. This effect is presumably due to the occurrence of random weakly correlated ionic displacements, violating the long-range order.

About the authors

S. B. Vakhrushev

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: svakhrushev@gmail.com
Россия, Санкт-Петербург

Yu. A. Bronwald

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: svakhrushev@gmail.com
Россия, Санкт-Петербург

S. A. Udovenko

Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia

Email: svakhrushev@gmail.com
Россия, Санкт-Петербург

E. Yu. Koroleva

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: svakhrushev@gmail.com
Россия, Санкт-Петербург

A. Yu. Molokov

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Author for correspondence.
Email: svakhrushev@gmail.com
Россия, Санкт-Петербург

References

  1. Cмоленский Г.А., Исупов В.А., Аграновская А.И., Попов С.Н. // ФТТ. 1960. Т. 2. № 11. С. 2906.
  2. Colla E.V., Koroleva E.Y., Okuneva N.M., Vakhrushev S.B. // J. Phys. Condens. Matter. 1992. V. 4. № 13. P. 3671. https://doi.org/10.1088/0953-8984/4/13/026
  3. Burns G., Scott B.A. // Solid State Commun. 1973. V. 13. № 3. P. 423. https://doi.org/10.1016/0038-1098(73)90622-4
  4. Вахрушев С.Б., Квятковский Б.Е., Малышева Р.С. // Изв. АН СССР. Сер. физ. 1987. Т. 51. № 12. С. 2142.
  5. Vakhrushev S.B., Nabereznov A.A., Sinha S.K. // J. Phys. Chem. Solids. 1996. V. 57. № 10. P. 1517. https://doi.org/10.1016/0022-3697(96)00022-4
  6. Ye Z.G., Schmid H. // Ferroelectrics. 1993. V. 145. № 1. P. 83. https://doi.org/10.1080/00150199308222438
  7. Колла Е.В., Вахрушев С.Б., Королева Е.Ю., Окунева Н.М. // ФТТ. 1996. Т. 38. № 7. С. 2183.
  8. Zhao X., Qu W., Tan X. // Phys. Rev. B. 2007. V. 75. № 10. P. 104106. https://doi.org/10.1103/PhysRevB.75.104106
  9. Colla E.V., Koroleva E.Y. Okuneva N.M., Vakhrushev S.B. // Phys. Rev. Lett. 1995. V. 74. № 9. P. 1681. https://doi.org/10.1103/PhysRevLett.74.1681
  10. Vakhrushev S.B., Kvyatkovsky B.E., Naberezhnov A.A. // Ferroelectrics. 1989. V. 90. № 1. P. 173. https://doi.org/10.1080/00150198908211287
  11. Stock C., Xu G., Gehring P.M. // Phys. Rev. B. 2007. V. 76. № 6. P. 064122. https://doi.org/10.1103/PhysRevB.76.064122
  12. Vakhrushev S.B., Kiat J.M., Dkhil B. // Solid State Commun. 1997. V. 103. № 8. P. 477. https://doi.org/10.1016/S0038-1098(97)00222-6
  13. Вакуленко А.Ф., Вахрушев С.Б., Королева Е.Ю. // ФТТ. 2020. Т. 62. № 10. С. 1670.
  14. Удовенко С.А., Чернышов Д.Ю., Андроникова Д.А. // ФТТ. 2018. Т. 60. № 5. С. 960.
  15. Rigaku O.D. // Rigaku Oxford Diffraction Ltd. 2015, Yarnton, Oxfordshire, England.
  16. Xu G., Zhong Z., Bing Y. // Nat. Mater. 2006. V. 5. № 2. P. 134. https://doi.org/10.1038/nmat1560
  17. Кривоглаз М.А. Диффузное рассеяние рентгеновских лучей и нейтронов на флуктуационных неоднородностях в неидеальных кристаллах. Киев: Наук. думка, 1984. 287 с.
  18. Glinchuk M.D., Farhi R. // J. Phys. Condens. Matter. 1996. V. 8. № 37. P. 6985. https://doi.org/10.1088/0953-8984/8/37/019
  19. Glinchuk M.D., Eliseev E.A., Stephanovich V.A., Hilczer B. // Ferroelectrics. 2001. V. 254. № 1. P. 13. https://doi.org/10.1080/00150190108214983
  20. Bokov A.A., Ye Z.G. // Reentrant phenomena in relaxors. Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects, 2016. P. 729. https://doi.org/10.1002/9781118935743.ch23
  21. Chao L.K., Colla E.V., Weissman M.B. // Phys. Rev. B. 2006. V. 74. № 1. P. 014105. https://doi.org/10.1103/PhysRevB.74.014105
  22. Dupuis V., Vincent E., Alba M., Hammann J. // Eur. Phys. J. B. 2006. V. 29. P. 19. https://doi.org/10.1140/epjb/e2002-00257-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (554KB)
4.

Download (179KB)

Copyright (c) 2023 Russian Academy of Sciences