Methacrylate-Containing n-Derivatives of N,N-Diethyl-4-(Phenyldiazenyl)Aniline as Initiators in Two-Photon Polymerization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of using a number of methacrylate-containing N,N-diethyl-4-(phenyldiazenyl)anilines with various para-substituents with respect to the azo group (-H, -Br, -NO2) as photoinitiators of radical polymerization is considered. The electrochemical and photoluminescent properties of these compounds have been studied. In the presence of azo dyes, two-photon photopolymerization of pentaerythritol triacrylate was carried out by focused radiation from a femtosecond laser with a wavelength of 780 nm. Structures with minimum linear element sizes of 94 ± 5 nm were obtained by DLW nanolithography, as well as 3D microstructures of complex architecture.

Full Text

Restricted Access

About the authors

M. V. Arsenyev

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Russian Federation, Nizhny Novgorod

E. R. Zhiganshin

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: zhiganshinae@mail.ru
Russian Federation, Nizhny Novgorod

D. A. Kolymagin

Moscow Institute of Physics and Technology (National Research University)

Email: zhiganshinae@mail.ru
Russian Federation, Dolgoprudny

V. A. Ilyichev

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Russian Federation, Nizhny Novgorod

R. S. Kovylin

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Russian Federation, Nizhny Novgorod

A. G. Vitukhnovsky

Moscow Institute of Physics and Technology (National Research University); P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Russian Federation, Dolgoprudny; Moscow

S. A. Chesnokov

G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Email: zhiganshinae@mail.ru
Russian Federation, Nizhny Novgorod

References

  1. Jaiswal A., Rastogi C. K., Rani S., Singh G. P. et al. // iScience. 2023. V. 26. № 106374.
  2. Zhiganshina E.R., Arsenyev M.V., Chesnokov S.A. // Polym. Sci., B. 2023. V. 65. P. 247.
  3. Zhiganshina E.R., Arsenyev M.V., Chubich D.A. et al. // Eur. Polym. J. 2021. V. 162. P. 110917.
  4. Liu Y.J., Yang J.Y., Nie Y.M. et al. // Microfluid Nanofluidics. 2015. V. 18. P. 427.
  5. Sakellari I., Yin X., Nesterov M.L., Terzaki K. et al. // Adv. Opt. Mater. 2017. V. 5. № 1700200.
  6. Rakhymzhanov A., Gueddida A., Alonso-Redondo E., et al. // Appl. Phys. Lett. 2016. V.108. № 201901.
  7. Zheng C., Jin F., Zhao Yu. et al. // Sens. Actuators B Chem. 2020. V. 304. № 127345.
  8. Otuka A.J.G., Torres B.B.M., Dipold J. et al. // Opt. Mater. Express. 2020. V. 10. № 8. P. 1792.
  9. Fominykh O.D., Sharipova A.V., Balakina M.Yu. // Comput. Mater. Sci. 2019. V. 168. P. 32.
  10. Lu Y., Hasegawa F., Goto T. et al. // J. Mater. Chem. 2003. V. 14. P. 75.
  11. Beharry A.A., Sadovski O., Woolley G.A. // J. Am. Chem. Soc. 2011. V. 133. P. 19684.
  12. Vivas M.G., Silva D.L., De Boni L. et al. // J. Phys. Chem. B. 2012. V. 116. P. 14677.
  13. Zhou L., Mao J., Ren Y. et al. // Small. 2018. V. 14. № 1703126.
  14. Ghanavatkar C.W., Mishra V.R., Nagaiyan S. // Dyes Pigm. 2021. V. 191. № 109367.
  15. Xu L., Zhang J., Yin L. et al. // J. Mater. Chem. C. 2020. V. 8. P. 6342.
  16. McKenzie L.K., Bryant H.E., Weinstein J.A. // Coord. Chem. Rev. 2019. V. 379. P. 2.
  17. Balakina M.Yu., Shalin N.I., Sharipova A.V., Fominykh O.D. // Mol. Phys. 2020. V. 118. № 21–22. P. 1.
  18. Mendonca C.R., Baldacchini T., Tayalia P., Mazur E. // J. Appl. Phys. 2007. V. 102. № 1. P. 013109.
  19. Tribuzi V., Fonseca R.D., Correa D.S., Mendonca C.R. // Opt. Mater. Express. 2013. V. 3. № 1. P. 21.
  20. Turro N.J. Modern Molecular Photochemistry. University Science Books, 1991. P. 628.
  21. Vijayakumar C., Balan B., Kim M.-J., Takeuchi M. // J. Phys. Chem. C. 2011. V. 115. P. 4533.
  22. Lim S.L., Li N.-J., Lu J.-M. et al. // ACS Appl. Mater. Interfaces. 2009. V. 1. № 1. P. 60.
  23. Qiu F.X., Zhang Q., Yang D.Y. // Mater. Sci. Forum. 2010. V. 663–665. P. 645.
  24. Armarego W.L.F., Chai C.L.L. Purification of laboratory chemicals. Amsterdam: Elsevier Inc. Butterworth-Heinemann, 2003.
  25. Eltaboni F., Bader N., El-Kailany R. et al. // J. Chem. Rev. 2022. V. 4. № 4. Р. 313.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (121KB)
3. Fig. 1. CVA curves of azo dyes 1 (a), 2 (b), 3 (c) and 4 (d). MeCN, Ag/AgCl/KCl(us.), 0.1 M (NBu4)ClO4, scanning speed – 200 mV s-1

Download (245KB)
4. Fig. 2. Luminescence spectra of polymer samples based on PET and azo dyes 1 (a), 2 (b), 3 (c), 4 (d). In all graphs: curve 1 – Polypet without azo dye; curve 2 – spectrum of polypet with dye registered at room temperature; 3 – spectrum A polypet with a dye registered at 77 K. The excitation wavelength is 405 nm, the radiation power is 100 MW

Download (391KB)
5. Fig. 3. SEM-image of linear elements from the composition K5 at magnification × 18000 times

Download (201KB)
6. Fig. 4. SEM images of cylindrical spiral 3D microstructures obtained on the K5 composition at magnification of ×400 (a) and ×2500 (b) times

Download (151KB)

Copyright (c) 2024 Russian Academy of Sciences