Transformations of Asphaltenes A1 and A2 During Atmospheric Residue Cracking

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, various conditions for cracking the atmospheric residue of the Novokuibyshevsk oil refinery are considered and analyzed. The optimal conditions for cracking the atmospheric residue have been established as a temperature of 450°С and a duration of 30 minutes. These conditions result in an additional 51.8 wt % of light fractions due to the destruction of 31.3 wt % of resin-asphaltene components. The study also examines the compaction products formed during cracking. The study analyzed two fractions of asphaltenes (A1 and A2) isolated from liquid cracking products using the method of structural group analysis. It was found that the duration of atmospheric cracking had an impact on the formation of secondary asphaltenes.

Texto integral

Acesso é fechado

Sobre autores

N. Sviridenko

Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nikita26sviridenko@gmail.com
Rússia, Tomsk

N. Sergeyev

Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: nikitaser99@gmail.com
Rússia, Tomsk

Kh. Urazov

Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: urazovhh@gmail.com
Rússia, Tomsk

Bibliografia

  1. Matuszewska A., Owczuk M., Biernat K. // Energies. 2022. V. 15. P. 2719. https://doi.org/10.3390/ en15082719
  2. Sviridenko N.N., Urazov Kh.Kh. // Pet. Sci. Technol. 2023. 41. 20. P. 1918-1933. https://doi.org/10.1080/10916466.2022.2104872
  3. Гончаров А.В., Кривцов Е.Б., Юрлов С.С. // ХТТ. 2022. 2. С. 56. https://doi.org/10.31857/S0023117722020025 [Goncharov, A. V. Krivtsov E. B., Yurlov S. S. // Solid Fuel Chemistry. 2022, vol. 56, no. 2, p. 138–144. https://doi.org/10.3103/S0361521922020021].
  4. Иовик Ю.А., Кривцов Е.Б. // Химия в интересах устойчивого развития. 2020. 4. C. 439. https://doi.org/10.15372/KhUR2020249 [Iovik Y.A., Krivtsov E.B. // Chemistry for Sustainable Development. 2020. 4. p. 425. https://doi.org/10.15372/CSD2020249].
  5. Бояр С.В., Копытов М.А. // ХТТ. 2023. 2 – 3. С. 92. https://doi.org/10.31857/S0023117723020020 [Boyar, S.V., Kopytov, M.A. Solid Fuel Chem. 2023, vol. 57, p. 82. https://doi.org/10.3103/S0361521923020027].
  6. Yakubov M.R., Abilova G.R., Yakubova S.G., Mironov N.A. // Pet. Chem. 2020. V. 60. P. 637. https://doi.org/10.1134/S0965544120060109
  7. Yoshikazu S., Yukichi H., Yoshiaki S., Tugsuu T., Enkhsaruul B. // J. Jpn. Petrol. Inst. 2013. V. 56. 1. P. 44. https://doi.org/10.1627/jpi.56.44
  8. Akimov A.S., Sviridenko N.N. // Pet. Sci. Technol. 2022. V. 40. 8. P. 980. https://doi.org/10.1080/10916466.2021.2008973
  9. Manasrah A.D., Nassar N.N. // Applied Energy. 2020. V. 28. P. 115890. https://doi.org/10.1016/j.apenergy.2020.115890
  10. Oh K.S. // J. Korean Chem. Soc. 2014. 31. P. 151. https://doi.org/10.12925/jkocs.2014.31.1.151
  11. Нальгиева Х.В., Копытов М.А. // ХТТ. 2022. № 2. С. 34. https://doi.org/10.31857/S0023117722020074 [Nal’gieva Kh. V., Kopytov M.A. // Solid Fuel Chemistry, 2022, vol. 56, no. 2, p. 116. https://doi.org/10.3103/S0361521922020070

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Fractional composition of atmospheric residue cracking products

Baixar (129KB)
3. Fig. 2. IR spectra of compaction products after cracking of atmospheric residue at duration: 1 - 30 min; 2 - 60 min

Baixar (109KB)
4. Fig. 3. Averaged molecules of asphaltenes A1 and A2 of initial fuel oil and its cracking products

Baixar (138KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024