Changes over time in the relationship between solar activity indices

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of the analysis of long-term changes in the relationship between solar activity indices for 1957–2022 are presented. For this purpose, the smoothed (using a 24-month filter) indices F10, F30, Ly-α, MgII, Ri and IG were used: the solar radio emission flux at the wavelengths of 10.7 and 30 cm, solar radiation in the Lyman-alpha line of hydrogen (121.567 nm), the ratio of the central part to the flanks in the magnesium emission band of 276–284 nm on the Sun, the international sunspot number and the ionospheric index, which is determined from ionospheric data as an analogue of the sunspot number. It was confirmed that the entire measurement period can be divided into the intervals 1957–1980, 1981–2012 and 2013–2022, in which the relationships between the solar activity indices are clearly different. In the interval 1957–1980, these relationships are stable over time, i.e. there is practically no linear time trend in the dependence of one solar activity index on another. In the 2013–2022 interval, such trends are usually significant. In this interval, the trend ∆IG(X) = IGIG(X) is negative and significant for X = F10, F30, MgII, Ly-α, or Ri, where IG(X) is the average dependence of IG on X for this interval.

Full Text

Restricted Access

About the authors

M. G. Deminov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

Author for correspondence.
Email: deminov@izmiran.ru
Russian Federation, Moscow, Troitsk

G. F. Deminova

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

Email: deminov@izmiran.ru
Russian Federation, Moscow, Troitsk

References

  1. Деминов М.Г. Связи между индексами солнечной активности в разные интервалы времени // Геомагнетизм и аэрономия. Т. 65. № 2. 2025.
  2. Danilov A.D., Berbeneva N.A. Statistical analysis of the critical frequency foF2 dependence on various solar activity indices // Adv. Space Res. V. 72. № 6. P. 2351–2361. 2023. https://doi.org/10.1016/j.asr.2023.05.012
  3. Danilov A.D., Konstantinova A.V. Trends in foF2 to 2022 and various solar activity indices // Adv. Space Res. V. 71. № 11. P. 4594–4603. 2023. https://doi.org/10.1016/j.asr.2023.01.028
  4. Hathaway D.H., Wilson R.M., Reichmann E.J. A synthesis of solar cycle prediction techniques // J. Geophys. Res. – Space. V. 104. № 10. P. 22375–22388. 1999. https://doi.org/10.1029/1999JA900313
  5. Hathaway D.H. The solar cycle // Living Rev. Sol. Phys. V. 12. ID 4. 2015. https://doi.org/10.1007/lrsp-2015-4
  6. Jones W.B., Gallet R.M. The representation of diurnal and geographic variations of ionospheric data by numerical methods // Telecommun. J. V. 29. № 5. P. 129–149. 1962.
  7. Jones W.B., Gallet R.M. The representation of diurnal and geographic variations of ionospheric data by numerical methods. 2 // Telecommun. J. V. 32. № 1. P. 18–28. 1965.
  8. Laštovička J., Burešova D. Relationships between foF2 and various solar activity proxies // Space Weather. V. 21. № 4. ID e2022SW003359. 2023. https://doi.org/10.1029/2022SW003359
  9. Laštovička J. Dependence of long-term trends in foF2 at middle latitudes on different solar activity proxies // Adv. Space Res. V. 73. № 1. P. 685–689. 2024. https://doi.org/10.1016/j.asr.2023.09.047
  10. Liu R., Smith P., King J. A new solar index which leads to improved foF2 predictions using the CCIR atlas // Telecommun. J. V. 50. № 8. P. 408–414. 1983.
  11. Machol J., Snow M., Woodraska D., Woods T., Viereck R., Coddington O. An improved Lyman-alpha composite // Earth and Space Science. V. 6. № 12. P. 2263–2272. 2019. https://doi.org/10.1029/2019EA000648
  12. Mursula K., Pevtsov A.A., Asikainen T., Tahtinen I., Yeates A.R. Transition to a weaker Sun: Changes in the solar atmosphere during the decay of the Modern Maximum // Astron. Astrophys. V. 685. ID A170. 2024. https://doi.org/10.1051/0004-6361/202449231
  13. Snow M., Machol J., Viereck R., Woods T., Weber M., Woodraska D., Elliott J. A revised Magnesium II core-to-wing ratio from SORCE SOLSTICE // Earth and Space Science. V. 6. № 11. P. 2106–2114. 2019. https:// doi.org/10.1029/2019EA000652
  14. Upton L.A., Hathaway D.H. Solar cycle precursors and the outlook for cycle 25 // J. Geophys. Res. – Space. V. 128. № 10. ID e2023JA031681. 2023. https://doi.org/10.1029/2023JA031681

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes over time in years of the Ri index, ΔRi(X) values and their linear trend (thin and thick lines) for the intervals 1953–1980, 1981–2012, 2013–2023 and the entire analyzed measurement period 1953–2023, where X = F10 or F30. The dots are the Ri values at the boundaries of these intervals.

Download (852KB)
3. Fig. 2. Dependence of the Ri index on F10 or F30 for time intervals in years 1957–1980 (thick lines), 1981–2012 (thin lines) and 2013–2023 (dashed lines).

Download (285KB)
4. Fig. 3. Changes over time in years in the values of ΔT(X) and their linear trends (thin and thick lines) for the intervals 1957–1980, 1981–2012, 2013–2023, where X = F10, F30, Ri or Ly-α.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences