Probabilistic Assessment of a Pentapeptide Composition Influence on Its Stability

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The influence of the arrangement of amino acid residues in a pentapeptide on its stability is being studied. A forecast of pentapeptide stability is made using the gradient boosting method, which allows one to evaluate the influence of each feature on the stability of the pentapeptide. Combinations of amino acid arrangements in the pentapeptide have been identified that make a significant contribution to its stability. It has been shown that the use
of such combinations reduces the amount of data required to obtain a reliable prediction of pentapeptide stability.

Sobre autores

A. Mikhal'skiy

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: ipuran@yandex.ru
Moscow, Russia

Zh. Novosel'tseva

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Email: novoselc.janna@yandex.ru
Moscow, Russia

A. Anashkina

Engelgardt Institute of Molecular Biology, Russian Academy of Sciences

Email: a_anastasya@inbox.ru
Moscow, Russia

A. Nekrasov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: a_nnekrasov@mail.ru
Moscow, Russia

Bibliografia

  1. Senior A.W., Evans R., Jumper J. et al. Improved protein structure prediction using potentials from deep learning // Nature. 2020. V. 577. P. 706-710.
  2. Pereira J., Simpkin A.J., Hartmann M.D. et al. High accuracy protein structure prediction in CASP14 // Proteins Structure Function and Bioinformatics. 2021. V. 89. No. 12. P. 1687-1699. https://doi.org/10.1002/prot.26171
  3. Nekrasov A.N., Kozmin Yu.P., Kozyrev S.V. et al. Hierarchical structure of protein sequence // Int. J. Mol. Sci. 2021. V. 22. No. 15. 8339. https://doi.org/10.3390/ijms22158339
  4. Anashkina A.A., Nekrasov A.N., Alekseeva L.G. et al. A minimum set of stable blocks for rational design of polypeptide chains // Biochimie. 2019. V. 160. P. 88-92.
  5. Ke G., Meng Q., Finley T., Wang T. et al. A Highly Efficient Gradient Boosting Decision Tree // Proc. 31st Conference on Neural Information Processing Systems (NIPS). Long Beach. 2017. P. 3149-3157.
  6. Bergstra J., Yamins D., Cox D.D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures // Proc. of the 30th International Conference on Machine Learning (ICML). 2013. P. 115-123.
  7. Lundberg S.M., Lee S.I. A unified approach to interpreting model predictions // Proc. 31st Conference on Neural Information Processing Systems (NIPS). Long Beach. 2017. P. 4765-4774.
  8. Mikhalskii A.I., Petrov I.V., Tsurko V.V., Anashkina A.A. et al. Application of mutual information estimation for prediction the structural stability of pentapeptides // Rus. J. Numer. Anal. Math. Model. 2020. V. 35. No. 5. P. 263-271.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2023